摘要
建立了中药口服固体制剂原辅料近红外(NIR)光谱数据库,采用模式识别方法研究了NIR光谱数据在物料分类和物性预测中的应用。使用便携式近红外光谱仪快速测量149批原辅料粉末的NIR漫反射光谱数据,并录入iTCM数据库。利用主成分分析(PCA)法探究NIR光谱数据对已知结构物料的分类能力,采用偏最小二乘(PLS)法研究了NIR光谱对原辅料物性参数和直接压片片剂性能的预测能力。经标准正态变量变换(SNV)+Savitzky-Golay(SG)平滑+一阶导数处理后的NIR光谱数据对微晶纤维素、乳糖、乙基纤维素、交联聚维酮和羟丙基甲基纤维素这5类辅料的区分能力较好。NIR光谱数据与原辅料粉末粒径、密度和吸湿性的相关性较强。NIR光谱信息作为物料物理性质的补充,可提高粉末直接压片片剂性能预测模型的性能。NIR光谱数据是iTCM数据库物性参数数据的补充,物性参数与NIR光谱数据的结合能更全面地表征原辅料的性质。
A near infrared(NIR)spectral database for pharmaceutical powders of Chinese medicine oral solid dosage forms was established,and the application of NIR spectral data in material classification and material properties prediction was studied by pattern recognition method.NIR diffuse reflectance spectra for 149 batches of pharmaceutical powders were rapidly measured with portable near infrared spectrometer,and the NIR spectral data were input into the intelligent traditional Chinese medicine(iTCM)database.Principal component analysis(PCA)method was used to explore the classification ability of NIR spectral data for materials with known structures.Partial least squares(PLS)method was used to study the prediction ability of NIR spectra on the material properties of pharmaceutical powders and tablet properties in direct compression.The NIR spectra pretreated by standard normal variable transformation(SNV)+Savitzky-Golay(SG)smoothing+first derivative exhibited a good discrimination ability for five kinds of excipients,i.e.microcrystalline cellulose,lactose,ethyl cellulose,polyvinylpolypyrrolidone and hydroxypropyl methylcellulose.NIR spectra had a strong correlation with particle size,density and hygroscopicity.NIR spectral information could be used as a supplement for the material properties,which could improve the performance of the prediction model for tablet properties in direct compression.Meanwhile,NIR spectral data were also a kind of supplement for the material properties data of iTCM database.The combination of material properties and NIR spectral data could be used to comprehensively characterize the properties of pharmaceutical excipients.
作者
张坤峰
王政
曹君杰
张志强
乔延江
徐冰
ZHANG Kun-feng;WANG Zheng;CAO Jun-jie;ZHANG Zhi-qiang;QIAO Yan-jiang;XU Bing(Department of Chinese Medicine Information Science,Beijing University of Chinese Medicine,Beijing 102400,China;Beijing Key Laborary for Production Process Control and Quality Evaluation of Traditional Chinese Medicine,Beijing Municipal Science & Technology Commission,Beijing 102400,China;Engineering Research Center of Key Technologies for Chinese Medicine Production and New Drug Development,Ministry of Education of People's Republic of China,Beijing 102400,China;Beijing Tcmages Pharmceutical Co.LTD,Beijing 101301,China;National and Regional Joint Engineering Research Center for Key Technologies of Chinese Medicine Formula Granules,Tianjin 301700,China)
出处
《分析测试学报》
CAS
CSCD
北大核心
2021年第1期1-9,共9页
Journal of Instrumental Analysis
基金
国家自然科学基金项目(82074033)
中华中医药学会青年人才托举工程项目(2019-QNRC2-C11)
北京中医药大学青年教师项目(2019-JYB-JS-015)。
关键词
近红外光谱法
数据库
物性表征
模式识别
药用辅料
中药浸膏粉
near infrared spectroscopy
database
material characterization
pattern recognition
pharmaceutical excipients
Chinese medicine extract powders