摘要
本文通过一种产生多局域空心光阱的光学系统,研究了光阱位置与反射镜偏转角度的关系。基于衍射积分和矩阵光学的理论,分析并计算了入射光源经过光学元件后的光场分布,通过调控反射镜的偏转角度,可以实现光阱位置的任意变换,达到精确捕获和囚禁微粒的目的。当两个反射镜偏转角度的关系为θ1-θ2=90°时,变换的光阱位置在一条倾斜的直线上;当两个反射镜的偏转角度关系为θ1<112.5°和θ2<22.5°时,空心四阱可转变为空心十二阱。对所形成的光阱进行了梯度力和散射力的计算,通过蒙特卡罗法验证了瑞利粒子被稳定地囚禁在光阱中心的极小区域内。多局域空心光阱对于多粒子的捕获和精确捕捉具有重要意义。
In this study,the relationship between the position of an optical trap and the deflection angle of a reflector was studied using an optical system that can produce a multi-bottle optical trap.The position of the optical trap could be arbitrarily changed by adjusting the deflection angles of both the mirror and reflector for accurate capture and trapping of particles.Based on the theory of diffraction integral and matrix optics,the light field distribution of the incident light source passing through an optical element was analyzed and calculated.When the relationship of angles isθ1-θ2=90°,the positions of the transformed optical traps are all on inclined straight lines.When the angles of deflection of the two mirrors areθ1<112.5°andθ2<22.5°,respectively,the four-bottle trap can be transformed to one of 12 bottles.The gradient and scattering forces of the formed optical traps were calculated,and the Monte Carlo method was used to verify that the Rayleigh particles had stable captivity in a very small area in the center of the optical trap.This work shows that studying the precise trapping of multiple particles in multi-bottle optical traps is of great significance.
作者
林兴磊
付文升
邹永刚
张贺
吕金光
LIN Xing-lei;FU Wen-sheng;ZOU Yong-gang;ZHANG He;LU Jin-guang(State Key Laboratory of High Power Semiconductor Laser,College of Optoelectronic Engineering,Changchun University of Science and Technology,Changchun 130022,China;State Key Laboratory of Applied Optics,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China)
出处
《光学精密工程》
EI
CAS
CSCD
北大核心
2021年第2期251-258,共8页
Optics and Precision Engineering
基金
应用光学国家重点实验室开放基金资助项目(No.SKLA02020001A17)。
关键词
光镊
激光技术
多局域空心光束
反射镜
位置变换
粒子囚禁
optical tweezer
laser technique
multi-bottle beam
reflector
position transformation
particle trapping