期刊文献+

基于JPS策略的改进RRT^(*)移动机器人全局路径规划算法 被引量:12

An improved RRT^(*) path planning algorithm based on JPS strategyfor mobile robot
下载PDF
导出
摘要 针对渐进最优快速扩展随机树(RRT^(*))算法在移动机器人路径规划中存在的收敛速度慢、消耗资源大、路径平滑度较低等问题,提出一种基于跳点搜索(JPS)策略的RRT^(*)算法。该算法在随机树扩展初期构建新的路径规划区域,查询是否存在一条目标点路径;在随机树扩展过程中,利用JPS搜索策略减少算法寻路过程中计算节点的数量。利用不同规格的栅格地图进行的仿真实验结果表明,相比于RRT^(*)算法,改进的RRT^(*)算法寻路效率更高、路径质量更优。最后,将两种算法在相同环境下进行路径规划实验。结果证明,改进的RRT*算法是一种有效、可行的改进算法,且寻路效率提升20%以上。 Aiming at the problems of slow convergence speed,large resource consumption and low path smoothness in the mobile robot path planning of rapidly-exploring random tree^(*)(RRT^(*))algorithm,an improved RRT^(*)algorithm based on jump point search(JPS)strategy is proposed.The algorithm constructs a new path planning region at the initial stage of random tree expansion and queries whether there is an entry punctuation path.In the process of random tree expansion,the number of nodes is reduced by using JPS strategy.The simulation experiment results by using grid maps of different specifications show that the improved RRT^(*)algorithm is more efficient and has better path quality than the RRT^(*)algorithm.Finally,the two algorithms are carried out in the same environment,and the results show that the improved RRT^(*)algorithm is an effective and feasible improved algorithm,and the path-finding efficiency is improved by more than 20%.
作者 马小陆 梅宏 王兵 吴紫恒 MA Xiaolu;MEI Hong;WANG Bing;WU Ziheng(School of Electrical and Information Engineering,Anhui University of Technology,Maanshan 24300,China)
出处 《中国惯性技术学报》 EI CSCD 北大核心 2020年第6期761-768,共8页 Journal of Chinese Inertial Technology
基金 国家自然科学基金面上项目(61472282) 安徽高校自然科学研究重点项目(KJ2019A0065) 特种重载机器人安徽省重点实验室开放课题(TZJQR004-2020)。
关键词 移动机器人 路径规划 最优路径 渐进最优快速扩展随机树算法 跳点搜索算法 mobile robot path planning optimal path rapidly-exploring random tree*algorithm jump point search algorithm
  • 相关文献

参考文献5

二级参考文献27

  • 1PATEL A. Variants of A* [EB/OL]. (2013-07-18)[2013-11- 01]. http..//theory, stanford, edu/- amitp/GamePmgram- mng/Variations, html.
  • 2PODHRASKI T. How to speed up A" pathfinding with the jump point search algorithm [EB/OL]. (2013-03-12) [2013- 11-01]. http://gamedev, tutsplus, com/tutorials/implementa- tion/speed-up-a-star-pathflnding-with-t he-j ump-point-search- algorithm.
  • 3WITMER N. Jump point search explained [EB/OL]. (2013- 05-05) [2013-11-01]. http://zerowidth, com/2013/05/05/ jump-point-search-explained, html.
  • 4XU X. Pathfinding visual [EB/OL]. [ 2013-11-01]. http:// qiao. github, io/PathFinding, is/visual.
  • 5HARABOR D, GRASTIEN A. Online graph pruning for path- finding on grid" maps [C]//Proceedings of the 25th National Conference on Artificial Intelligence (AAAI). San Franciseo: Cs. n. 3,2011.
  • 6HARABOR D, GRASTIEN A. The JPS pathfinding system [C]//Proeeedings of the 5th Symposium on Combinatorial Search (SoCS). Niagara Falls: [s. n. ], 2012.
  • 7王勇,蔡自兴,周育人,肖赤心.约束优化进化算法[J].软件学报,2009,20(1):11-29. 被引量:116
  • 8宋金泽,戴斌,单恩忠,贺汉根.一种改进的RRT路径规划算法[J].电子学报,2010,38(B02):225-228. 被引量:61
  • 9朱大奇,颜明重.移动机器人路径规划技术综述[J].控制与决策,2010,25(7):961-967. 被引量:329
  • 10于振中,闫继宏,赵杰,陈志峰,朱延河.改进人工势场法的移动机器人路径规划[J].哈尔滨工业大学学报,2011,43(1):50-55. 被引量:120

共引文献124

同被引文献79

引证文献12

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部