期刊文献+

介电润湿液体透镜仿生复眼的设计与仿真 被引量:2

Design and simulation of bionic compound eye with electrowetting liquid lens
下载PDF
导出
摘要 为解决仿生复眼系统不能自适应变焦的问题,提出了一种基于介电润湿液体透镜曲面阵列的可变焦仿生复眼系统。分析系统结构对成像性能的影响,计算系统的自适应变焦能力及相应像平面可移动范围。结果表明:系统成像的视场角随着基底曲率的增大而增大。相比于非均匀透镜阵列,均匀透镜阵列可明显降低系统的离焦像差。适当减小子透镜单元尺寸,也可以达到降低边缘透镜离焦像差的目的。当物距或者接收器位置发生改变时,通过调整子透镜单元焦距降低系统的离焦像差。系统接收器可移动范围为1.9 mm~15 mm。 To solve the problem that the bionic compound eye system can't zoom adaptively,a zoomable bionic compound eye system based on electrowetting-on-dielectric liquid lens cambered array is proposed.The influence of the system structure on the imaging performance is analyzed,and the adaptive zoom capability of the system and the moving range of the corresponding image plane are calculated.The results show that the field of view angle increases with the increase of the curvature of the base.Compared with the non-uniform lens array,the uniform lens array can significantly reduce the defocus aberration of the system.Reducing the size of the lens unit can also decrease the defocus aberration of the edge lens.When the object distance or receiver position is changed,the defocus aberration of the system will be reduced by adjusting the focal length of the lens unit.The movable range of the system receiver is 1.9 mm~15 mm.
作者 赵瑞 彭超 张凯 孔梅梅 陈陶 关建飞 梁忠诚 Zhao Rui;Peng Chao;Zhang Kai;Kong Meimei;Chen Tao;Guan Jianfei;Liang Zhongcheng(Center of Optofludic Technology,College of Electronic and Optical Engineering,Nanjing University of Posts and Telecommunication,Nanjng,Jiangsu 210023,China)
出处 《光电工程》 CAS CSCD 北大核心 2021年第2期49-56,共8页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(61775102,61905117) 基础加强计划技术领域基金项目(2019-JCJQ-JJ-446)。
关键词 光学设计 介电润湿 复眼 液体透镜阵列 可变焦 optical design electrowetting-on-dielectric compound eye liquid lens array variable-focus
  • 相关文献

参考文献6

二级参考文献60

  • 1刘德森,胡建明,刘炜,蒋小平.平面交叉型微透镜阵列的制作及成像特性研究[J].中国激光,2005,32(6):743-748. 被引量:8
  • 2窦任生,林海,胡继承.控制液晶器件产生的程控透镜和微透镜阵列[J].光学学报,2005,25(7):959-964. 被引量:8
  • 3张红鑫,卢振武,王瑞庭,李凤有,刘华,孙强.曲面复眼成像系统的研究[J].光学精密工程,2006,14(3):346-350. 被引量:49
  • 4F. M. Dickey, S. C. Holswade. Laser Beam Shaping Theory and Techniques[M]. New York: Marcel Dekker, 2000, 271-311.
  • 5B. Kohler, A. Noeske, T. Kindervater et al.. 11 kW direct diode laser system with homogenized 55 × 20 mm^2 Top-Hat intensity distribution[C]. SPIE, 2007, 6456 : 645600.
  • 6B. V. Giel, Y. Meuret, H. Thienpont. Using a fly's eye integrator in eficient illumination engines with multiple light- emitting diode light sources[J]. Opt. Eng. , 2007, 46(4) 043001.
  • 7P. Schreiber, S. Kudaev, P. Dannberg et al.. Homogeneous LED-illumination using microlens arrays[C]. SPIE, 2005, 5942: 59420K.
  • 8F. C. Wippermann, U. D. Zeitner, P. Dannberg et al.. Fly's eye condenser based on chirped microlens arrays[C]. SPIE, 2007, 6663: 666309.
  • 9M. Zimmermann, N. Lindleinb, R. Voelkel a al.. Microlens laser beam homogenizer-from theory to application[C]. SPIE, 2007, 6663:666302.
  • 10P. Schreiber, P. Dannberg, B. Hoefer. Chirped microlens arrays for diode laser circularization and beam expansion[C]. SPIE, 2005, 5874: 58760K.

共引文献27

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部