期刊文献+

基于GRU神经网络的数据中心能耗预测模型研究 被引量:16

Research on Predicting Model of Energy Consumption in Data Center Based on GRU Neural Network
下载PDF
导出
摘要 数据中心产生的巨大能耗给经济和环境带来了压力,对能耗进行分析和预测可为其能耗效率的优化提供重要依据。考虑到包括室外天气、内部数据中心CPU负载等影响数据中心能耗的复杂因素,文章提出了基于门控循环单元(Gated Recurrent Unit,GRU)神经网络的数据中心能耗预测模型。首先,通过对数据中心能耗数据进行分析,提取了与数据中心能耗最强相关的特征,并将这些时序特征数据作为输入进行模型训练。然后,提出一种结合神经网络(Artificial Neural Network,ANN)和GRU的网络模型(ANN-GRU)来预测数据中心能耗。最后,在仿真环境下基于真实轨迹数据进行了验证和分析。结果表明,与支持向量回归(Support Vector Regression,SVR)、LinearSVR、ANN模型相比,ANN-GRU具有更高的预测精度。 The huge energy consumption of data centers brings pressure to economy and environment.Analysis and prediction of energy consumption is a promising way to reduce data center energy consumption.Energy consumption is affected by many complicated factors,including outdoor temperature,CPU load and etc.In this paper,a data center energy prediction model based on ANN(Artificial Neural Network)and GRU(Gated Recurrent Unit)is proposed.First,we analyze characteristics of energy consumption and select features that are related to energy consumption as much as possible.These time series characteristic data are used as input for model training.Then,the combination of ANN and GRU networks are used to predict energy consumption.Finally,based on the real trajectory data,it is verified and analyzed in the simulation environment.The experimental simulation results show that compared with Linear SVR,SVR,and ANN,the proposed method has higher prediction accuracy.
作者 杨丽娜 赵鹏 王佩哲 YANG Lina;ZHAO Peng;WANG Peizhe(Faculty of Electronic and Information Engineering,Xi’an Jiaotong University,Xi’an 710049,China)
出处 《电力信息与通信技术》 2021年第3期10-18,共9页 Electric Power Information and Communication Technology
基金 国家重点研发计划项目(2017YFB1010004)。
关键词 数据中心 能耗预测 时间序列数据 人工神经网络 GRU data center energy consumption prediction time series data artificial neural network gate recurrent unit
  • 相关文献

参考文献4

二级参考文献66

  • 1McCullough JC, Agarwal Y, Chandrashekar J, Kuppuswamy S, Snoeren AC, Gupta RK. Evaluating the effectiveness of model- based power characterization. In: Proc. of the USENIX Annual Technical Conf. USENIX Association Berkeley, 2011. 12. https://www.usenix.org/legacy/events/atc 11/tech/final_files/McCullough.pdf.
  • 2Pakbaznia E, Pedram M. Minimizing data center cooling and server power costs. In: Proc. of the 14th ACM/IEEE Int'l Symp. on Low Power Electronics and Design. New York: ACM Press, 2009. 145-150. [doi: 10.1145/1594233.1594268].
  • 3Bash C, Forman G. Cool job allocation: Measuring the power savings of placing jobs at cooling-efficient locations in the data center. In: Proc. of the 14th USENIX Annual Technical Conf. USENIX Association Berkeley, 2007. 138-140. http://dl.acm.org/ citation.cfm?id= 1364414.
  • 4Moreno-Vozmediano R, Montero RS, Llorente IM. Key challenges in cloud computing: Enabling the future Internet of services. Internet Computing, IEEE, 2013,17(4):18-25. [doi: 10.1109/MIC.2012.69].
  • 5Barbulescu M, Grigoriu RO, Neculoiu G, Halcu I, Sandulescu VC, Niculescu-Faida O, Marinescu M, Marinescu V. Energy efficiency in cloud computing and distributed systems. In: Proc. of the 2013 14th RoEduNet Int'l Conf. on Networking in Education and Research. IEEE, 2013.1-5. [doi: 10.1109/RoEduNet.2013.6714197].
  • 6Fan X, Weber WD, Barroso LA. Power provisioning for a warehouse-sized computer. ACM SIGARCH Computer Architecture News, 2007,35(2):13-23. [doi: 10.1145/1250662.1250665].
  • 7Hsu CH, Poole SW. Power signature analysis of the SPECpower_ssj2008 Benchmark. In: Proc. of the 2011 14th IEEE Int'l Symp. on Performance Analysis of Systems and Software (ISPASS). IEEE, 2011. 227-236. Idol: 10.1109/ISPASS.2011.5762739].
  • 8Beloglazov A, Abawajy J, Buyya R. Energy-Aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generation Computer Systems, 2012,28(5):755-768. [doi: 10.10 t 6/j.future.2011.04.017].
  • 9Eeonomou D, Rivoire S, Kozyrakis C, Ranganathan P. Full-System power analysis and modeling for server environments. In: Proc. of the l 4th Int' 1 Syrup. on Computer Architecture. IEEE, 2006, 70-77. http://citeseerx.ist.psu.edu/viewdoc/summary?doi= 10.1.1.84. 1332.
  • 10Lewis AW, Ghosh S, Tzeng NF. Run-Time energy consumption estimation based on workload in server systems. HotPower, 2008, 8:17-21. https://www.usenix.rg/egay/events/htpwer8/teh/fuMapers/ewis/ewis-htm/.

共引文献191

同被引文献226

引证文献16

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部