摘要
传统拓扑细化法提取血管骨架在轴向长度和分支上会有误差,使临床诊断的精确度有所欠缺。该研究采用新型血管端点约束的骨架提取方法,尽可能的保留血管的长度和分支信息。使用模拟图像和显微CT图像分别进行测试,并与传统拓扑细化方法结果进行比较分析。新型骨架化算法中,提取中心骨架的平均距离比传统方法要小(P<0.05),准确率要较传统骨架化方法也有所提高(P<0.05),能够有效规避传统方法在长度和分支信息上的损失,为临床诊断提供更加准确的信息。
Traditional skeleton extraction algorithm will lose its axial length which leads to a lack of vascular length and branch information.In this study,a novel skeleton extraction method based on end point constraint was used to retain the length and branch information of vessels as much as possible.The study used simulated images and micro-CT images to test it,and compared with the traditional topology thinning method.In the new skeletonization algorithm,the average distance of the center line extracted by this method is smaller than that of the traditional method(P<0.05),the accuracy is also improved compared with the traditional skeletonization method(P<0.05).It can effectively avoid the loss of length and branch information of traditional methodsand provide more accurate information for clinical diagnosis.
作者
周明璋
王坤
王永治
张岁霞
刘慧强
Zhou Mingzhang;Wang Kun;Wang Yongzhi;Zhang Suixia;Liu Huiqiang(College of Public Health,Xinjiang Medical University,Urumqi 830011,China;College of Medical Engineeringand Technology,Xinjiang Medical University,Urumqi 830011,China)
出处
《国外电子测量技术》
2020年第12期114-118,共5页
Foreign Electronic Measurement Technology
基金
新疆维吾尔自治区自然科学基金(2019D01C188)
省部共建国家重点实验室项目(SKL-HIDCA-2018-9)
省部共建国家重点实验室项目(SKL-HIDCA-2019-26)资助。
关键词
血管骨架化
三维血管网络
CT图像
三维拓扑结构
vascular skeletonization
3D vascular network
CT image
3D topological structure