摘要
非等熵气体动力学系统Cauchy问题弱解全局存在性有两个公开问题:一个是包含真空的小初值问题,另一个是任意大初值问题.本文通过引入一个放缩框架证明了上述两个问题的等价性,即对于粘性消失解,其包含真空小初值问题的一致BV估计蕴含着任意大初值问题弱解的全局存在性.该放缩框架对大多数具有物理背景的双曲守恒律系统亦成立.
There are two open problems on the global existence results of non-isentropic gas dynamics.One is whether the weak solutions exist globally with small initial data containing vacuum,the other is whether the global existence results hold with arbitrary large initial data.By introducing a scaling framework,we give the equivalence of the two problems above.For vanishing viscosity solutions,the positive answer to the first question naturally implies the positive answer to the second one.And this scaling framework can be applied to most systems of conservation laws with physical background.
作者
刘树君
Shu Jun LIU(School of Applied Mathematics,Nanjing University of Finance and Econormics,Nanjing 210023,P.R.China)
出处
《数学学报(中文版)》
CSCD
北大核心
2021年第2期255-260,共6页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11872201)
江苏省高校自然科学基金资助项目(19KJB110013)。
关键词
双曲守恒律
非等熵气体动力学
粘性消失解
放缩框架
hyperbolic conservation laws
non-isentropic gas dynamics
vanishing viscosity method
scaling framework