期刊文献+

基于不同核函数SVR的锂离子电池SOH预测比较 被引量:3

Holistic comparison of different kernel functions for support vector regression based on state-of-health prediction of lithium-ion battery
下载PDF
导出
摘要 电池健康状态(state of health,SOH)预测是电池故障诊断与健康管理的重要组成部分,准确地预测电池健康状态至关重要。支持向量回归方法因具有良好的回归能力而被作为预测电池剩余使用寿命的首选数据驱动方法之一。核函数将样本从低维空间映射到高维空间,以便进行精确分类,参数选择决定核函数的映射能力,训练集的大小和分布也会影响支持向量回归(SVR)的回归能力。将锂离子电池数据分为前期、中期和后期训练数据。采用遗传算法(GA)和粒子群算法(PSO)对四个核函数的参数进行了优化。实验结果对比表明,采用径向基函数(RBF)的GA-SVR和PSO-SVR可以较准确地预测锂离子电池的剩余使用寿命。 Battery health prediction is an important part of prognostic and health management.It is particularly important to accurately predict the state of health(SOH).Owing to its excellent regression ability,support vector regression(SVR)is the preferred data-driven method used to predict the remaining useful life(RUL)of batteries.Kernel functions are used to map samples from a lower to a higher dimensional space for accurate classification.Parameter estimation considerably affects the mapping ability of kernel functions.The size and distribution of the training set also affect the regression ability of SVR.Lithium-ion battery data are divided into prophase,metaphase,and anaphase training data.Particle swarm optimization(PSO)and a genetic algorithm(GA)are applied to optimize the parameters of the four kernel functions.The comparison of the experimental results show that GA-SVR with a radial basis function(RBF)and PSO-SVR with an RBF in the anaphase can accurately predict the RUL of lithium-ion batteries.
作者 韩伟 王帅 张筱辰 李义婷 陈翁祥 HAN Wei;WANG Shuai;ZHANG Xiaochen;LI Yiting;CHEN Wengxiang(Digital Fujian Internet-of-Things Laboratory of Environmental Monitoring,College of Mathematics and Information,Fujian Normal University,Fuzhou Fujian 350007,China;NARI Group Corporation(State Grid Electric Power Research Institute),Nanjing Jiangsu 211106,China)
出处 《电源技术》 CAS 北大核心 2021年第3期362-365,377,共5页 Chinese Journal of Power Sources
基金 福建省自然科学基金(2019J01021006) 福建省教育厅中青年教师教育科研项目(JT180074,JAT190071)。
关键词 锂离子电池 剩余使用寿命 支持向量回归 核函数 遗传算法 粒子群算法 lithium-ion battery remaining useful life support vector regression kernel function genetic algorithm particle swarm optimization
  • 相关文献

参考文献1

二级参考文献12

  • 1Francis E. H. Tay,L. J. Cao.ε-Descending Support Vector Machines for Financial Time Series Forecasting[J].Neural Processing Letters.2002(2)
  • 2Lijuan Cao,Francis E.H Tay.Financial Forecasting Using Support Vector Machines[J].Neural Computing & Applications.2001(2)
  • 3Vapnik, V,(transl. Zhang, Xuegong).Nature of Statistical Learning Theory[]..2000
  • 4Yang, Haiqin,Chan, Laiwan,King, Irwin.Support vector machine regression for volatile stock market prediction[].Proceedings of Intelligent Data Engineering and Automated Learning.2002
  • 5Ma, Runyong,Peng, Jianbing.Discussion on relationship between earthquake magnitude, rupture scale and displacement[].Journal of Northeast Agricultural University English Edition.2006
  • 6Scholkopf B,Sung K K,Burges C J C et al.Comparing support vector machines with Gaussian kernels to radial basis function classifiers[].IEEE Transactions on Signal Processing.1997
  • 7Perez-Cruz F,Navia-Vazquez A,Figueiras-Vidal A R,et al.Empirical risk minimization for support vector classifiers[].IEEE Transactions on Neural Networks.2003
  • 8P.Belhumeur,J.Hespanha,D.J.Kriegmand.Eigenfaces vs Fisherfaces: Recognition using Class Specific Linear Projection[].IEEE Transactions on Pattern Analysis and Machine Intelligenc.1997
  • 9Cao Li -juan,Tay Francis E H.Financial Forecasting Using Support Vector Machines[].Neural Computing and Applications.2001
  • 10Tay Francis E H,Cao Li -juan.-Descending Support Vector Machines for Financial Time Series Forecasting[].Neural Processing Letters.2002

共引文献1

同被引文献36

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部