摘要
本文基于分形理论,首先研究了幂律流体在多孔介质中球向流动的特性,建立了分形多孔介质中幂律流体球向流动的渗透率分形模型,并把无量纲渗透率与已有模型进行比较,验证了本模型的正确性。研究结果表明幂律流体球向渗透率随孔隙率和幂指数n的增加而增加,随迂曲度分形维数和径向半径r的增加而减小。
In this paper,the characteristics of spherical flow of power law fluid in porous media is studied based on the fractal theory,and the fractal permeability model for power law fluid spherical flow in fractal porous media is established.The dimensionless permeability for power law fluid spherical flow is compared with available expression.The correctness of this model is proved.The results show that the effective permeability for spherical seepage increases with the advance of the porosity and the power-law fluid index n and decreases with the increase of the tortuosity fractal dimension and radial radius r.
作者
王世芳
吴涛
苏怡
WANG Shi-fang;WU Tao;SU Yi(Institute of Theoretical Physics,Hubei University of Education,Wuhan 430205,China;Hubei Key Laboratory of Optical Information and Pattern Recognition,Wuhan Institute of Technology,Wuhan 430205,China)
出处
《湖北第二师范学院学报》
2021年第2期32-35,共4页
Journal of Hubei University of Education
关键词
幂律流体
多孔介质
分形理论
渗透率
power law fluid
porous media
fractal theory
permeability