期刊文献+

微波光子技术在制导领域中的应用研究 被引量:1

Application of Microwave Photon Technology in Guidance Field
下载PDF
导出
摘要 精确制导技术是精确制导武器的核心技术。为了实现精确目标打击,制导系统必须具有高分辨能力和抗干扰能力。目前的制导技术发展趋势可以总结为更高更宽,高是指更高的工作频率,宽是指更宽的工作带宽。但是电子技术的瓶颈逐渐显现,尤其在信号产生方面,这从源头上限制了雷达制导性能的提升。利用微波光子技术实现微波信号的产生与处理,实现大带宽的任意波形信号,可有效解决电子瓶颈问题。微波光子雷达同时具有光子和微波技术的优势,因此研究基于微波光子的新型制导技术具有先进性和挑战性,且具有很强的应用背景。 Precision guidance technology is the core technology of precision guided weapons.In order to achieve accurate target strike,the guidance system must have high resolution and anti-jamming ability.The current development trend of guidance technology can be summarized as higher operating frequency and wider ope-rating bandwidth.However,the bottleneck of electronic technology is gradually emerging,particularly in signal generation,which limits the improvement of radar guidance performance from the source.Using microwave photon technology to generate and process microwave signals and realize arbitrary waveform signals with large bandwidth can effectively solve the electronic bottleneck.Microwave photonic radar has the advantages of both photon and microwave technologies.Therefore,the study of new guidance technology based on microwave photon technology is advanced and challenging,and also has a strong application background.
作者 尚震 马晓华 SHANG Zhen;MA Xiaohua(The 38 th Research Institute of China Electronics Technology Group Corporation,Hefei 230088,China;The 2 nd Military Representative Office of the Equipment Department of the Rocket Army in Nanjing,Nanjing 210000,China)
出处 《雷达科学与技术》 北大核心 2021年第1期111-116,共6页 Radar Science and Technology
关键词 微波光子 制导系统 低相噪频率源 光子波束形成 microwave photon guidance system low phase noise frequency source photon beamforming network
  • 相关文献

参考文献4

二级参考文献184

  • 1朱厦,李彦鹏,黎湘,毛钧杰.基于信号稀疏表示的Chirp信号参数估计方法[J].现代雷达,2008,30(4):59-63. 被引量:1
  • 2Skolnik M I. Radar handbook[M]. 3rd Edition. New York: McGraw-Hill, 2008: 1-24.
  • 3Tavik G C, Hilterbrick C L, Evins J B, et al. The advanced multifunction RF concept[J]. IEEE Trans actions on Microwave Theory and Techniques, 2005, 53(3) : 1009-1020.
  • 4Saddik G N, Singh R S, Brown E R. Ultra-wideband multifunctional communications/radar system [J]. IEEE Transactions on Microwave Theory and Tech niques, 2007, 55(7): 1431-1437.
  • 5Hu S, Xiong Y Z, Wang L, et al. A 77-135 GHz down conversion IQ mixer for 10 Gbps muhiband ap- plieations[C]//the 13th International Symposium on Integrated Circuits (ISIC). Singapore: IEEE, 2011: 29-34.
  • 6Jeon S, Wang Y J, Wang H, et al. A scalable 6-to- 18 GHz concurrent dual-band quad-beam phased-ar- ray receiver in CMOS[J]. IEEE Journal of Solid- State Circuits, 2008, 43(12): 2660-2673.
  • 7Jain V, Tzeng F, Zhou L, et al. A single-chip dual- band 22 29-GHz/77-81-GHz BiCMOS transceiver for automotive radars [J]. IEEE Journal of Solid State Circuits, 2009, 4,4(12): 3469-3485.
  • 8Ono H. Power saving type multi-band microwave de- tector[P]. U.S. : Patent 58899301995-2-14, 1995.
  • 9Chu R S, Lee K M, Wang A T S. Muhiband phased- array antenna with interleaved tapered-elements and waveguide radiators [C]//1996 IEEE Antennas and Propagation Society International Symposium Digest (AP-S 1996). Baltimore: IEEE, 1996: 1616-1619.
  • 10Kates R M, Petre P. Slot fed multi-band antenna [P]. U.S.: Patent 61917402001-2-20, 2001.

共引文献86

同被引文献22

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部