期刊文献+

加装风帆对VLCC直升机甲板气流场的影响

Influence of Installed Sail on Air Flow Field above Helicopter Deck for VLCC
下载PDF
导出
摘要 船舶加装翼型风帆在显著降低主机功率、节省燃油消耗和减少温室气体排放的同时,也改变了船上直升机甲板上方的气流场,因此,非常有必要开展加装风帆对船舶直升机甲板气流场的影响评估。采用风洞中的热线风速仪测量技术,以30万吨级超大型油船(VLCC)为对象,计及风向角、垂向高度等影响因素,定量评估加装风帆对船舶直升机甲板气流场的影响;在此基础上,根据CAP437标准推荐的判定准则,获得VLCC有、无风帆的直升机飞行包络线。研究结果可为加装风帆的VLCC直升机安全起降作业提供帮助,也可为后续加装风帆的船型甲板布局设计提供参考。 Main engine power of ship, its fuel consumption and CO2 emissions can be decreased as wing sail systems installed, together also with impact on air flow field above its helicopter deck simultaneously. It’s necessary to carry out the research on air flow field above helicopter deck of the ship as sail systems installed. Taking a 300 000 DWT VLCC as the object, the influence of the installed sail on the air flow field above the helicopter deck is elevated by fixed quantity using the hot wire measurement considering the effect of wind flow angle and vertical height. On the basis, according the recommended judgment criterion by CAP437, the helicopter flight envelopes with and without sail of VLCC are acquired. The research results can provide help for the operation of the helicopter’s landing and taking off, and offer reference for the ship deck arranging design of the following sail installation.
作者 陈纪军 潘子英 夏贤 司朝善 CHEN Jijun;PAN Ziying;XIA Xian;SI Chaoshan(China Ship Scientific Research Center,Jiangsu Wuxi 214082,China)
出处 《船舶工程》 CSCD 北大核心 2020年第12期57-59,66,共4页 Ship Engineering
关键词 风帆 气流场 直升机 包络线 风洞 热线 sail flow field helicopter flight envelope wind tunnel hot wire
  • 相关文献

参考文献3

二级参考文献18

  • 1张云彩 盛振邦.圆弧型风帆空气动力性能的试验研究.中国造船,1983,(4).
  • 2Cheeseman I C, Bennett W E. The Effect of the Ground on a Helicopter Rotor in Forward Flight[ R]. ARC R&M 3021, September 1955.
  • 3He C J. Development and Application of Generalized Dy- namic Wake Theory for Lifting Rotors [ D ]. Ph.D. The- sis, School of Aerospace Engineering, Georgia Institute of Technology, July, 1989.
  • 4Peters D A. and He C J. Finite State Induced Flow Mod- els Part2 : Three Dimensional Rotor Disk [ J ]. Journal of Aircraft, 1995,32(2).
  • 5NOJIRI T, SANO K, YAGI H. Hybrid sail developed to show maximum lift coefficient of 2.42 for large vessels-- reduction of fuel consumption and CO2 gas emissions expected[J]. Mitsui Zosen Tech. Rev., 2003, 178:132-1383.
  • 6TOSHIFUMI F, KOICHI H, MICHIO U, TADASHI N. On development of high performance sails for oceangoing sailing ship[C]//MARSIM'03, Kanazawa, Japan, August 25-28,2003.
  • 7TOSHIFUMI F, KOICHI H, MICHIO U, Tadashi N. On aerodynamic characteristics of a hybrid-sail with square soft sail[C]//Proceedings of the Thirteenth International Offshore and Polar Engineering Conference, Honolulu, Hawaii, USA, May 25-30,2003.
  • 8TOSHIFUMI F, GRANT E H, FUMITOSHI K, et al. Sail-sail and sail-hull interaction effects of hybrid-sail assisted bulk carrier[J]. Journal of Marine Science and Technology, 2005.
  • 9YOSHIMASA M, TADASHI N, TOSHIFUMU F, et al. Investigation into underwater fin arrangement effect on steady sailing characteristics[C]// Proceedings of The Thirteenth International Offshore and Polar Engineering Conference, Honolulu, Hawaii, USA, May 25-30, 2003.
  • 10TOSHIFUMI F, GRANT E H, FUMITOSHI K, et al. Steady sailing performance of a hybrid-sail assisted bulk carrier[J] Journal of Marine Science and Technology, 2005.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部