期刊文献+

基于多域学习的红外空中目标跟踪算法

Infrared Air Target Tracking Algorithm Based on Multi-Domain Learning
下载PDF
导出
摘要 自深度学习技术被提出以来,迅速风靡各个学术领域,极大地推动了图像处理技术的发展。红外目标跟踪技术是红外导引领域的一项关键技术,但目前深度学习技术在图像处理中的应用主要集中在可见光领域,在红外领域鲜有应用。同时,由于红外场景的复杂性,红外空中目标跟踪的效果遭遇瓶颈。该文基于多域学习训练思想,设计开发了一种应用于红外领域的目标跟踪卷积神经网络,利用VOT2016红外数据集训练后,在仿真红外空中目标序列上达到了优秀的跟踪速度和跟踪精度,并具备一定的抗干扰能力。 Since the introduction of deep learning technology,it has quickly become popular in various academic fields and has greatly promoted the development of image processing technology.Infrared target tracking technology is a key technology in the field of infrared guidance,but the current application of deep learning technology in image processing is mainly concentrated in the field of visible light,with few applications in the field of infrared.At the same time,due to the complexity of infrared scenes,the effect of infrared air target tracking encounters a bottleneck.Based on the idea of multi-domian learning,this paper designs and develops a target tracking convolutional neural network applied in the infrared field.After training with the VOT2016 infrared datasets,it achieves excellent tracking speed and tracking accuracy on the simulated infrared air target sequence.And have anti-interference ability.
作者 庄旭阳 陈宝国 Zhuang Xu-Yang;Chen Bao-Guo(China Airborne Missile Academy,Henan Luoyang 471000;Aviation Key Laboratory of Science and Technology on Airborne Guided Weapons)
出处 《电子质量》 2021年第3期1-6,共6页 Electronics Quality
关键词 深度学习 红外导引 目标跟踪 多域学习 抗干扰 Deep learning Infrared guidance Target tracking Multi-domain learning Anti-interference
  • 相关文献

参考文献4

二级参考文献124

  • 1杨卫平,王炜华,沈振康.目标与诱饵红外特性及其识别技术研究[J].红外与激光工程,2006,35(z4):239-247. 被引量:4
  • 2王飞跃.平行系统方法与复杂系统的管理和控制[J].控制与决策,2004,19(5):485-489. 被引量:333
  • 3王炳健,刘上乾,周慧鑫,李庆.基于平台直方图的红外图像自适应增强算法[J].光子学报,2005,34(2):299-301. 被引量:101
  • 4Mooney J M. Ilf noise measurement on PtSi focal plane arrays[ C ]//Proceedings qISPIE, 1990, 1308:122-131.
  • 5Rogalski A. Infrared detectors[J]. An overview, Infrored Physics & Technology. 2002, 43:187-210.
  • 6Olivier R1OU, Stephane BERREBI and Pierre BREMOND. Non Unifon'nity Correction and themlal drift compensation of thermal infrared camera[C]//Proc'eedings of SPIE, 2004, 5405:294-302.
  • 7Scribner D A , Sarkady K A , Kruer M R, et al. Adaptive retina-like preprocessing for imaging detector arrays[C]//Proceedings of IEEE lnternutional Conferem'e in Neural Networks, 1993. 1953:1955-1960.
  • 8Zuo C, Chen Q, Gu G H, et al. New temporal high-pass filter nonuniformity correction based on bilateral filter[J]. Opt. Rev, 2011 (18): 197- 202.
  • 9Harris J G, Yu-Ming C. Nonuniformity correction of infrared image sequences using the constant-statistics constraint[J]. Image Process IEEE Trans. 1999(8): 1148-1151.
  • 10Zuo C, Chen Q, Gu G H, et al. Scene-based nonunitbrmity correction method using multiscale constant statistics[J]. Opt. Eng. 2011, 50(8): 087006.

共引文献699

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部