摘要
人脑效应连接网络刻画了脑区间神经活动的因果效应.对不同人群的脑效应连接网络进行研究不仅能为神经精神疾病病理机制的理解提供新视角,而且能为疾病的早期诊断和治疗评价提供新的脑网络影像学标记,具有十分重要的理论意义和应用价值.利用计算方法从功能磁共振成像(Functional magnetic resonance imaging,fMRI)数据中识别脑效应连接网络是目前人脑连接组学中一项重要的研究课题.本文首先概括了从fMRI数据中进行脑效应连接网络识别的主要流程,说明了其中的主要步骤和方法;然后,给出了一种脑效应连接网络识别方法的分类体系,并对其中一些代表性的识别算法进行了阐述;最后,通过对该领域挑战性问题的分析,预测了脑效应连接网络识别未来的研究方向,以期对相关研究提供一定的参考.
The brain effective connectivity networks characterize the causal interactions of neural activity between brain regions.Researches on brain effective connectivity networks of different populations can not only provide a new perspective for understanding the pathological mechanism of neuropsychiatric diseases,but also provide novel brain network imaging markers for the early diagnosis and evaluation for treatment of diseases,thus have very important theoretical and practical value.Using computational approaches to identify brain effective connectivity networks from functional magnetic resonance imaging(fMRI)data is currently an important subject in the human brain connectome.This paper firstly summarizes a workflow of identifying brain effective connectivity networks from fMRI data and illustrates its main processes and methods.Next,a comprehensive category system of identifying brain effective connectivity networks is presented,and several typical identifying algorithms in each category are described.Finally,by analyzing challenging problems in this area,we predict the further research directions in identifying brain effective connectivity networks and hope to present some references for related researches.
作者
冀俊忠
邹爱笑
刘金铎
JI Jun-Zhong;ZOU Ai-Xiao;LIU Jin-Duo(Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology,Beijing Artificial Intelligence Institute,Faculty of Information Technology,Beijing University of Technology,Beijing 100124)
出处
《自动化学报》
EI
CAS
CSCD
北大核心
2021年第2期278-296,共19页
Acta Automatica Sinica
基金
国家自然科学基金(61672065)资助。
关键词
人脑连接组学
功能磁共振成像
脑效应连接网络识别
分类体系
挑战与展望
Human brain connectome
functional magnetic resonance imaging(fMRI)
brain effective connectivity networks identification
category system
challenges and prospects