期刊文献+

Knowledge-aware path: interpretable graph reasoning in proactive dialogue generation 被引量:2

原文传递
导出
摘要 Proactive dialogue generates dialogue utterance based on a conversation goal and a given knowledge graph(KG). Existing methods combine knowledge of each turn of dialogue with knowledge triples by hidden variables, resulting in the interpretability of generation results is relatively poor. An interpretable knowledge-aware path(KAP) model was proposed for knowledge reasoning in proactive dialogue generation.KAP model can transform explicit and implicit knowledge of each turn of dialogue into corresponding dialogue state matrix, thus forming the KAP for dialogue history. Based on KAP, the next turn of dialogue state vector can be infered from both the topology and semantic of KG. This vector can indicate knowledge distribution of next sentence, so it enhances the accuracy and interpretability of dialogue generation. Experiments show that KAP model’s dialogue generation is closer to actual conversation than other state-of-the-art proactive dialogue models.
出处 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2021年第1期1-9,共9页 中国邮电高校学报(英文版)
基金 supported by the National Natural Science Foundation of China (61702047)。
  • 相关文献

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部