期刊文献+

Carbon cycle variability in tropical Atlantic across two Early Eocene hyperthermals

下载PDF
导出
摘要 Early Eocene hyperthermals are geologically short-lived global warming events and represent fundamental perturbations to the global carbon cycle and the Earth’s ecosystem due to massive additions of isotopically light carbon to the ocean-atmosphere system.They serve as ancient analogs for understanding how the oceanic carbonate system and surface-ocean ecosystem would respond to ongoing and future climate change.Here,we present a continuous carbonate record across the Eocene Thermal Maximum 2(ETM2 or H1,ca.54.1 Ma)and H2(ca.54 Ma)events from an expanded section at Ocean Drilling Program Site 1258 in tropical Atlantic.The abundant calcareous nannofossils and moderate carbonate content throughout the studied interval suggest this record was deposited above the calcite compensation depth(CCD),but below the lysocline and under the influence of terrestrial dilution.An Earth system model cGENIE is used to simulate the carbon cycle dynamics across the ETM2 and H2 to offer insights on the mechanism of the rapid warming and subsequent recovery in climate and ecosystem.The model suggests moderate changes in ocean pH(0.1–0.2 unit)for the two scenarios,biogenic methane from a rechargeable methane capacitor and organic matter oxidation from thawing of the permafrost.These pH changes are consistent with a recent independent pH estimate across the ETM2 using boron isotopes.The carbon emission flux during the ETM2 is at least an order of magnitude smaller than that during the Paleocene–Eocene Thermal Maximum(PETM)(0.015–0.05 Pg C yr^(-1)vs.0.3–1.7 Pg C yr^(-1)).The comparable pre-and post-event carbonate contents suggest the lysocline did not over deepen following the ETM2 at this tropical Atlantic site,indicating spatial heterogeneity in the carbonate system due to strong dilution influence from terrestrial weathering and riverine discharge at Site 1258.
出处 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第2期521-530,共10页 地学前缘(英文版)
基金 This study was supported by the National Natural Science Foundation of China(Grant Nos.41976045&41888101)and the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)through a group research project(99147-42080024).Y.Cui is supported by the U.S.National Science Foundation award 1603051.Samples and core data were provided by ODP.ODP is sponsored by the U.S.National Science Foundation(NSF)and participating countries under management of Joint Oceanographic Institutions(JOI),Inc.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部