摘要
针对传统道路提取方法存在的道路边缘粗糙、抗干扰性弱、提取精度低等问题,提出了一种基于编码解码器的空洞卷积模型(Deeplab v3)的道路提取方法。首先,对原始高分辨率遥感影像进行标注;其次,利用标注数据集对Deeplab v3模型进行训练、测试;最后,得到高分辨率遥感影像道路提取结果。分析结果可知,该模型能够较好地提取高分辨率遥感影像中的道路边缘特征,相比其他道路提取方法具有更高的提取精度和更加完整的道路信息,正确率可达到93%以上。
A new road extraction method based on the Deeplab v3 model is proposed to solve the problems of traditional road extraction methods such as rough road edge,weak anti-interference and low extraction accuracy existing.A three-step procedure is developed in this study for extracting roads based on high-resolution remote sensing image.Firstly,label the high-resolution remote sensing image.Secondly,the Deeplab v3 model is trained and tested by using the label data set.Finally,get the road extraction results of the high-resolution remote sensing image.The results indicate that the Deeplab v3 model can excellently extract the road edge features combined with the high-resolution remote sensing image.Compared with other road extraction methods,this proposed method displays more complete extracted road information and higher extraction accuracy,which has the accuracy over 93%.
作者
韩玲
杨朝辉
李良志
刘志恒
黄勃学
HAN Ling;YANG Zhaohui;LI Liangzhi;LIU Zhiheng;HUANG Boxue(School of Geology Engineering and Geomatics,Chang’an University,Xi’an 710054,China;Shaanxi Key Laboratory of Land Consolidation,Xi’an 710054,China)
出处
《遥感信息》
CSCD
北大核心
2021年第1期22-28,共7页
Remote Sensing Information
基金
装备预研教育部联合基金项目(6141A02022376)
陕西省土地整治重点实验室基金项目(2018-ZZ04)。