期刊文献+

刀具磨损状况的检测方法研究综述 被引量:12

Survey of research on detection methods for tool wear condition
下载PDF
导出
摘要 刀具磨损状况的有效检测不仅能提高刀具本身的利用率,还能提高工件的加工精度,延长机床的使用年限。刀具磨损状况的准确检测是当前智能加工技术的主要发展方向,通过回顾近年来刀具磨损状况的检测方法,着重分析了检测信号的获取、特征提取及模式识别等关键技术,并由此提出了一种可操作性强、不影响机床加工的刀具磨损状况智能检测新方法。最后,针对刀具磨损状况的检测应用现状和存在不足进行了探讨,并对未来的智能检测方法发展方向进行了展望,以期得到更好的刀具磨损状况智能检测方法,促进刀具磨损状况检测技术在智能装备中的应用与推广。 The effective detection of the tool wear condition not only improves the utilization of the tool itself,but also improves the machining accuracy of the workpiece and prolongs the service life of the machine tool.The accurate detection of tool wear condition is the main development direction of current intelligent machining technology.The research status of detection of tool wear condition was reviewed,and the principle and method of the key technologies in intelligent detection system including sensor selection,feature extraction and pattern recognition were analyzed in depth.And thus a new method for intelligent detection of tool wear condition that is maneuverable and does not affect the machining was proposed.Finally,the application status,existing problems and future direction of tool wear condition detection were discussed in details.The progress will be expected to improve the reliability of tool wear condition intelligent detection system and promote its application in the intelligent equipments.
作者 袁军 刘丽冰 张艳蕊 杨泽青 YUAN Jun;LIU Libing;ZHANG Yanrui;YANG Zeqing(School of Mechanical Engineering,Hebei University of Technology,Tianjin 300130,China;Experimental Training Center,Hebei University of Technology,Tianjin 300401,China)
出处 《现代制造工程》 CSCD 北大核心 2021年第3期152-160,共9页 Modern Manufacturing Engineering
基金 国家自然科学基金项目(51305124)。
关键词 刀具磨损 智能检测 特征提取 模式识别 智能装备 tool wear intelligent detection feature extraction pattern recognition intelligent equipments
  • 相关文献

参考文献4

二级参考文献32

  • 1关贞珍,郑海起,杨云涛,王彦刚.基于非线性几何不变量的轴承故障诊断方法研究[J].振动与冲击,2009,28(11):130-133. 被引量:12
  • 2张英堂,任国全,李国璋.柴油机振动信号分形特征诊断的改进算法[J].内燃机学报,2006,24(5):459-464. 被引量:14
  • 3郑金兴,张铭钧,孟庆鑫.多传感器数据融合技术在刀具状态监测中的应用[J].传感器与微系统,2007,26(4):90-93. 被引量:6
  • 4Guo Jun, Zhou Jian-zhong, Qin Hui, et al. Monthly streamflow forecasting based on improved support vectormachine model[ J ]. Expert Systems with Application, 2011, 38(10) : 13073 - 13081.
  • 5Shi Jing-zhuo, Zhao Fu-jie, Shen Xiao-xi, et al. Chaotic operation and chaos control of traveling wave ultrasonic montor [ J ]. Ultrasonics, 2013,53 ( 6 ) : 1112 - 1123.
  • 6Ma Hui-zhu, Li Cheng-xiang. Research on parameters estimation of sea clutter in data preprocessing [ J ]. Optik- International Journal for Light and Electron Optics, 2013, 124(5) :901 -905.
  • 7Nie Zhen-hua, Hao Hong, Ma Hong-wei. Structural damage detection based on the reconstructed phase space for reinforced concrete slab: Experimental study [ J ]. Journal of Sound and Vibration, 2013, 332(4) :1061 -1078.
  • 8Patel V N, Tandon N, Pandey P K. Defect detection in deep groove ball bearing in presence of external vibration using envelope analysis and duffing oscillator [ J ]. Measurement, 2012, 45(5) :960 -970.
  • 9Shayegh F, Sadri S, Amirfattahi R, et al. A model-based method for computation of correlation dimension, Lyapunov exponents and symchronization from depth-EEG signals [ J ]. Computer methods and programs in biomedicine, 2014, 113(1) :323 -337.
  • 10Li Y W, WEI G Z, YANG L. Rolling bearing fault diagnosis based on wavelet packet-neuralnetwork characteristic entropy [ J]. Advanced Materials Research, 2010,108 ( 1 ) : 1075 - 1079.

共引文献59

同被引文献138

引证文献12

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部