期刊文献+

基于分组残差联合空间学习的人体活动识别 被引量:3

Human activity recognition based on grouped residuals combined with spatial learning
下载PDF
导出
摘要 针对基于多传感器的交互性人体活动识别任务,提出了一种基于窗口预处理和分组残差联合空间学习的多传感器交互性活动识别算法。首先,针对多传感器交互性活动数据预处理过程中的滑动窗口处理方式对人体活动识别的影响进行了实验分析和实验对比,包括不同滑动窗口大小和覆盖率等;其次,基于多传感器的交互性活动识别的窗口预处理结论,利用分组残差联合空间学习进行活动识别与分类,并设计多组对比实验,分别对网络模型、损失函数和分类器等进行了优化;最后,在Opportunity活动数据集上进行对比试验,该算法性能超过了现有的大部分其他活动识别算法。实验结果验证了基于窗口预处理和分组残差联合空间学习的多传感器人体活动识别算法的有效性。 Aiming at the multi-sensor-based interactive human activity recognition task,a multi-sensor interactive activity recognition algorithm based on window preprocessing and group residual joint spatial learning is proposed.On one hand,we analyze and compare the influence of sliding window preprocessing on multi-sensor-based interactive human activity recognition,including different sliding window sizes and coverage,etc.On the other hand,based on the conclusion of sliding window preprocessing,we propose the group residual joint spatial learning for activity recognition and classification,and design multiple experiments to optimize network model,loss function,and classifier.Finally,a comparative experiment is performed on the opportunity activity recognition data set.The performance of our algorithm outperforms most of the others.It further verifies the effectiveness of the multi-sensor-based human activity recognition algorithm based on window preprocessing and grouped residual combined with spatial learning.
作者 吕明琪 陈文青 陈铁明 刘杨圣彦 Lü Mingqi;CHEN Wenqing;CHEN Tieming;LIU Yangshengyan(College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China;College of Mechanical Engineering,Zhejiang University,Hangzhou 310007,China)
出处 《浙江工业大学学报》 CAS 北大核心 2021年第2期215-224,共10页 Journal of Zhejiang University of Technology
基金 国家自然科学基金-通用技术基础研究联合基金资助项目(U1936215) 浙江省自然科学基金资助项目(LY18F020033)。
关键词 人体活动识别 多传感器 窗口预处理 残差网络 联合空间学习 human activity recognition multi-sensor window preprocessing residual network joint spatial learning
  • 相关文献

参考文献7

二级参考文献40

  • 1原春锋,王传旭,张祥光,刘云.光照突变环境下基于高斯混合模型和梯度信息的视频分割[J].中国图象图形学报,2007,12(11):2068-2072. 被引量:24
  • 2SILBERSTEIN S, LEVI D, KOGAN V, et al. Vision-basedpedestrian detection for rear-view eameras[C]//Intelligent Ve- hicles Symposium Proceedings. Dearborn: IEEE publisher, 2014:853-860.
  • 3PRIOLETTI A, MOGELMOSE A, GRISLIERI P, et al. Part-based pedestrian detection and feature-based tracking for driver assistance: real-time, robust algorithms and evaluation [J]. IEEE Transactions on Intelligent Transportation Sys- tems,2013,14(3) : 1346-1359.
  • 4OLMEDA D, PREMEBIDA C, NUNES U, etal. Pedestrian detection in far infrared images[J]. Integrated Computer-Ai- ded Engineering,2013,20(4) :347-360.
  • 5DOLLAR P, WOJEK C, SCHIELE B, et al. Pedestrian de tection: an evaluation of the state of the art[J]. Pattern Analy- sis and Machine Intelligence, IEEE Transactions on, 2012,34 (4):743-761.
  • 6FELZENSZWAI.B P F, HUTTENLOCHER D P. Efficient matching of pictorial structures[C] //Computer Vision and Pattern Recognition. Hilton Head Island: IEEE publisher, 2000:66 -73.
  • 7BROGGI A, BERTOZZI M, FASCIOLI A, et al. Shape- based pedestrian detection [C]//IEEE Intelligent Vehicles Syrup. Dearborn : IEEE publisher, 2000 : 215-220.
  • 8MOHAN A, PAPAGEORGIOU C, POGGIO T. Example- based object detection in images by components[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, ZOO1,23(4) : 349-361.
  • 9STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time traeking[C]//Computer Vision and Pattern Recognition. Fort Collins: IEEE publisher, 1999 : 1063-1069.
  • 10DALAL N, TRIGGS B. Histograms of oriented gradients for human deteetion[C]//Computer Vision and Pattern Recogni- tion. San Diego: IEEE publisher,2005:886 -893.

共引文献60

同被引文献23

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部