摘要
格林公式沟通了被积函数在积分区域上的积分和边界积分的关系。在一维函数中,格林公式即为定积分的分部积分法,在高维函数中,分部积分法与格林公式不再相同。首先给出一维分部积分法并加以证明,其次给出二维格林公式及其证明并利用高维函数分部积分法证明一般形式的格林公式,最后给出格林公式在微分方程变分问题中的一些应用。
Green’s formula communicates the relationship between the integral of the integrand in the integral region and the boundary integral.In one-dimensional function,Green’s formula is the partial integration method of definite integral.In higher dimensional function,the partial integration method is no longer the same as Green’s formula.Firstly,the one-dimensional partial integration method is given and proved.Secondly,the two-dimensional Green’s formula and its proof are given,and the general Green’s formula is proved by using the high-dimensional partial integration method.Finally,some applications of the Green’s formula in the variational problems of differential equations are given.
作者
魏其萍
王跃
蔡梅梅
何小斌
WEI Qi-ping;WANG Yue;CAI Mei-mei;HE Xiao-bin(School of Data Science and Information Engineering,Guizhou Minzu University,Guiyang 550025,China;School of Mathematics and Statistics,Guizhou University,Guiyang 550025,China;School of Mathematics and Statistics,Zunyi Normal University,Zunyi 563002,China)
出处
《佛山科学技术学院学报(自然科学版)》
CAS
2021年第2期39-46,共8页
Journal of Foshan University(Natural Science Edition)
基金
国家自然科学基金资助项目(11661021)
贵州省研究生科研基金立项项目(黔教合YJSCXJH〔2020〕083)。
关键词
格林公式
分部积分法
变分问题
Green’s formula
method of integration by parts
variational problems