期刊文献+

改进猴群算法求解有界背包问题

Improved Monkey Algorithm for Bounded Knapsack Problem
下载PDF
导出
摘要 有界背包问题是经典的NP完全问题,确定性算法求解该问题时难度较大。本文在基本猴群算法的基础上,提出了一种改进猴群算法用于求解此问题。首先,对猴群算法的爬过程进行改进;然后,在望-跳过程后引入改进的合作过程,以加快算法的收敛速度;最后,在翻过程中引入改进的信息共享机制和扰动机制,让猴群之间进行信息交流,增加解的多样性,避免陷入局部最优,以便寻得更优解。为有效求解有界背包问题,先对猴群个体采用自然数编码,通过修复与优化法对不可行解进行处理,保证算法的求解效果。通过对三大规模有界背包问题实例进行仿真实验,结果表明,改进猴群算法能得到近似比接近1的近似解。 As a classic NP complete problem,the solution of bounded knapsack problem by deterministic algorithm is of relatively more difficulty.This paper proposes an improved monkey algorithm(IMA)on the basis of basic monkey algorithm(MA)to solve this problem.Firstly,the crawling process of monkey algorithm is improved;then,an improved cooperative process is introduced after the look-and-hop process to speed up the convergence rate of the algorithm;finally,an improved information sharing mechanism and disturbance mechanism are introduced in the turning process to avoid falling into a local optimum and obtain a better solution by allowing the monkey groups to communicate information and increasing the diversity of solutions.In order to effectively solve the bounded knapsack problem,monkey group individuals are firstly encoded with natural numbers,and then the infeasible solution is processed through repair and optimization method to ensure the solution effect of the algorithm.The results of simulation experiments on three large-scale bounded knapsack problems show that IMA is capable of obtaining an approximate solution with an approximate ratio close to 1.
作者 肖颜 潘大志 冯世强 XIAO Yan;PAN Dazhi;FENG Shiqiang(College of Mathematics and Information,Nanchong Sichuan 637009,China;Institute of Computing Method and Application Software,China West Normal University,Nanchong Sichuan 637009,China)
出处 《西华师范大学学报(自然科学版)》 2021年第1期84-91,共8页 Journal of China West Normal University(Natural Sciences)
基金 国家自然科学基金项目(11871059) 四川省教育厅自然科学基金项目(18ZA0469) 西华师范大学英才科研基金项目(17YC385) 西华师范大学校级科研团队项目(CXTD2015-4)。
关键词 有界背包问题 改进猴群算法 合作过程 信息共享机制 扰动机制 bounded knapsack problem improved monkey algorithm cooperation process information sharing mechanism disturbance mechanism
  • 相关文献

参考文献5

二级参考文献31

  • 1金义雄,程浩忠,严健勇,张丽.改进粒子群算法及其在输电网规划中的应用[J].中国电机工程学报,2005,25(4):46-50. 被引量:89
  • 2YING CHIEH FANG, CHIUH CHENG CHYU. Proceedings of The 9th Asia Pasific Industrial Engineering & Management Systems Conference [C]//A population learning algorithm for the time/cost trade-offs resource constrained project scheduling problem,2008, Nusa Dua, Bali Indonesia: Asia pacific industrial engineering and management society,2008:459-466.
  • 3Liu Baoding. Theory and practice of uncertain programming [M]. Heidelberg: Physiea-Verlag.2002.
  • 4Liu Yankui, and Liu Baoding. Expected value operator of random fuzzy variable and random fuzzy expected value models [J], International Journal of Uncertainty, Fuzziness & Knowledge-Based Systems, 2003, 11 (2),195-215.
  • 5Liu Baoding, and Liu Yankui. Expected value of fuzzy variable and fuzzy expected value models [J], IEEE Transactions on Fuzzy Systems, 2002, 10 (4), 445-450.
  • 6Zhao Ruiqing, Tang Wansheng. Monkey algorithm for global numerical optimization[J], Journal of Uncertain Systems. 2008, 2(3), 165-176.
  • 7Li Wei. Using Genetic Algorithm for Network Intrusion Detec- tion[C]//Proc, of the United States Department of EnergyCyber Security Group Training Conference. Kansas City, USA: [s. n.], 2004.
  • 8Gong Renhui, Zulkernine M, Abolmaesumi P. A Software Implementation of a Genetic Algorithm Based Approach toNetwork Intrusion Detection[C]//Proc. of SNPD/SAWN'05. [S. 1.]: IEEE Press, 2005.
  • 9Zhao Ruiqing, Tang Wansheng. Monkey Algorithm for Global Numerical Optimization[J]. Journal of Uncertain Systems, 2008, 2(3): 164-175.
  • 10Owais S. Using Genetic Algorithm Approach in Intrusion Detection Systems Techniques[C]//Proc. of CISIM'09. [S. 1.]: IEEE Press, 2009.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部