摘要
基于事件触发机制,研究了一类非严格反馈非线性系统的自适应神经网络追踪控制问题.结合反步技术、神经网络和事件触发机制,提出了一种自适应神经网络控制方案,减少了数据传输量并减轻了控制器和执行器之间的传递负担,保证了输出信号尽可能地追踪到参考信号,同时使得闭环系统的所有信号有界.此外,通过避免芝诺现象保证了所提事件触发机制的可行性.最后,给出一个例子验证了所提出策略的有效性.
In this paper,the adaptive neural network tracking control is addressed based on event-triggering mechanism for a class of nonstrict-feedback nonlinear systems.By combining backstepping technology,neural network and event-triggering mechanism,an adaptive neural network control scheme is proposed,which reduces the data amount transmitted between the controller and the actuator,ensures the output signal to track the reference signal as much as possible,and guarantees all the signals of the closed-loop system to be bounded.In addition,the feasibility of the proposed event-triggering mechanism is ensured by avoiding Zeno phenomenon.Finally,an example is given to verify the effectiveness of the proposed scheme.
作者
廉玉晓
杨文静
王琳淇
王学良
夏建伟
LIAN Yuxiao;YANG Wenjing;WANG Linqi;WANG Xueliang;XIA Jianwei(School of Mathematical Sciences,Liaocheng University,Liaocheng 252000)
出处
《南京信息工程大学学报(自然科学版)》
CAS
北大核心
2021年第1期59-65,共7页
Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金
国家自然科学基金(61973148)。
关键词
非严格反馈结构
非线性系统
反步技术
事件触发机制
追踪控制
nonstrict-feedback structure
nonlinear systems
backstepping technology
event-triggering mechanism
tracking control