摘要
考虑了有界区域内的多孔介质中的溶解度与温度有关的Brinkman-Forchheimer方程组的解的结构稳定性。首先推出温度与溶解度的一些估计,然后构造一个能量表达式,接着推出能量表达式所满足的的微分不等式,最后积分该微分不等式得到了方程组的解对边界系数的连续依赖性结果。
The structural stability for the Brinkman-Forchheimer equations in a bounded region is considered. Firstly, some bounds for the temperature and the salt concentration are given. Then an energy expression is formulated and the expression that satisfies a differential inequality is deduced. By integrating differential inequality, the continuous dependence for the solution on the boundary coefficients is obtained.
作者
欧阳柏平
李远飞
OUYANG Bai-ping;LI Yuan-fei(College of Data Science,Huashang College Guangdong University of Finance Economics,Guangzhou 511300,Guangdong,China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2021年第2期103-110,共8页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(61907010)
广东教育厅重点资助项目(2018KZDXM048)
广东财经大学华商学院校内资助项目(2020HSDS01)。
关键词
多孔介质
流体方程组
连续依赖性
porous medium
fluid equations
continuous dependence