期刊文献+

Chlorinated polymer solar cells simultaneously enhanced by fullerene and non-fullerene ternary strategies 被引量:2

下载PDF
导出
摘要 To achieve efficient polymer solar cells(PSCs)with full utilization of the whole spectrum,the multicomponent devices are of great importance to be deeply explored,especially for their capability of one-step fabrication.However,the research about one same binary system simultaneously derivated various multi-component PSC is still very limited.Herein,we achieved the whole constructions from one binary host to different ternary systems and even the quaternary one.The ternary strategies with fullerene acceptor,PC_(71)BM,and non-fullerene acceptor,BT_(6)IC-BO-4Cl,as the third component,both boosted the device efficiencies of PBT4Cl-Bz:IT-4F binary system from about 9% to comparatively beyond 11%.Despite the comparable improvement of performance,there existed other similarities and differences in two ternary strategies.In detail,the isotropic carrier transport of PC_(71)BM which largely elevated the fill factor(FF)in the corresponding devices,while the strong absorption of BT_(6)IC-BO-4Cl enhanced the short current density(J_(SC))most.More interestingly,quaternary devices based on PBT4Cl-Bz:IT-4F:PC71 BM:BT_(6)IC-BO-4Cl could combine both advantages of fullerene and non-fullerene ternary strategies,further pumped the J_(SC) from 16.44 to the highest level of 19.66 mA cm^(-2) among all devices,eventually resulted in an optimized efficiency of 11.69%.It reveals that both fullerene and non-fullerene ternary strategies have their unique feature to elevate the device performance either by efficient isotropic carrier transport or better coverage of whole sunlight spectrum and easy tunable energy levels from organic materials.The key is how to integrate the two pathways in one system and provide a more competitive solution facing high-quality PSCs.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期620-625,共6页 能源化学(英文版)
基金 the financial support by the National Natural Science Foundation of China(21733005,21975115,51773087) Shenzhen Fundamental Research Program(KQJSCX20180319114442157,JCYJ20170817111214740,JCYJ20180302180238419) Shenzhen Nobel Prize Scientists Laboratory Project(C17213101) Guangdong Provincial Key Laboratory of Catalysis(No.2020B121201002) Guangdong Innovative and Entrepreneurial Research Team Program(2016ZT06G587) Shenzhen Sci-Tech Fund(KYTDPT20181011104007) the supported by Center for Computational Science and Engineering at SUSTech。
  • 相关文献

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部