期刊文献+

一种适应光照多变的夜间前景提取方法

A Night Foreground Extraction Method Suitable for Changing Light
下载PDF
导出
摘要 夜间前景提取是智能监控的必要处理过程,也是新时代下店铺防盗的高效手段。提出了一种在强弱光多变下具有检测鲁棒性的动态目标自动提取算法。在亮度通道上利用直方图均衡技术根据设置参数自适应灰度增幅,结合Canny边缘图像进行差分处理,最后给出前景提取算法。实验结果表明:在强弱光不同光照环境下,该方法可以很好的削弱不同光照对前景提取带来的多噪声、过度曝光等影响,提高前景对比度,相比其他方法,显示效果清晰完整,并满足实时性要求。 Nighttime foreground extraction is a necessary process for intelligent monitoring and an efficient means of anti-theft for shops in the new era.A dynamic target automatic extraction algorithm with robust detection under strong and weak light is proposed.On the brightness channel,the histogram equalization technique is used to adaptively increase the gray scale according to the set parameters,and the differential processing is performed in conjunction with the Canny edge image.Finally,the foreground extraction algorithm is given.The experimental results show that:under different light environments with strong and weak light,this method can well reduce the effects of different noise on the foreground extraction,such as multiple noise and overexposure,and improve the foreground contrast.Compared with other methods,the display effect is clear and complete.And meet the real-time requirements.
作者 叶慎飞 汪志成 张志君 YE Shen-fei;WANG Zhi-cheng;ZHANG Zhi-jun(East China University of Technology,Nanchang,Jiangxi 330013,China)
机构地区 东华理工大学
出处 《计算技术与自动化》 2021年第1期129-134,139,共7页 Computing Technology and Automation
关键词 前景提取 直方图均衡 边缘图像 差分处理 foreground extraction histogram equalization edge image difference processing
  • 相关文献

参考文献2

二级参考文献25

  • 1曹治国,马怡伟,桑农,曾坤,徐高升.夜间图像匹配中的斑状噪声预处理[J].红外与激光工程,2004,33(3):278-281. 被引量:2
  • 2Zhang X. , Yang Y. , Han Z. , et al.. Object class detection: a survey[ J]. ACM Computing Surveys, 2013, 46 ( 1 ) :1 - 53.
  • 3Huang K. , Wang L. , Tan T. , et al.. A real-time object detecting and tracking system for outdoor night surveillance [ J ]. Pattern Recognition, 2008,41 ( 1 ) :432 - 444.
  • 4Soumya T.. A Moving Object Segmentation Method for Low Illumination Night Videos [ J ]. Loeture Notes in Engineering & Computer Science, 2008, 2173(1 ):763-768.
  • 5Wang Y., Fan C. T.. Moving Object Detection for Night Surveillance [ C ]. Proceedings of the 2010 Sixth InternationalConference on Intelligent Information Hiding and Multimedia Signal Processing, Darmstadt: Betal Hirshman Publishing Conpany ,2010.
  • 6Tsai T. , Huang C. , Fan C.. A High Performance Foreground Detection Algorithm for Night Scenes[ C ]. Proceedings of the 2013 IEEE Workshop on Signal Processing Systems (SIPS) , Taipei : Dongli Publishing Group, 2013.
  • 7Cheng C. , Wen K. , Chang H. , et al.. Night Video Surveillance Based on the Second-Order Statistics Features[C]. Proceedings of the 2014 Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH - MSP), Kitakyushu : Yanbo publishing conpany, 2014.
  • 8McFarlane N. , Schofield C.. Segmentation and tracking of piglets in images[ J]. Machine Vision and Applications, 1995, 8 (3): 187 - 193.
  • 9Bouwmans T. , Elbaf F. , Vachon B.. Background modeling using mixture of Gaussians for foreground detection-a survey[J]. Recent Patents on Computer Science,2008,1 ( 3 ) : 219 - 237.
  • 10曾庆贵,宋世军,张佳福,刘胜利.一种基于信息融合的图像分割方法[J].山东建筑大学学报,2008(2):154-158. 被引量:2

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部