摘要
针对视频追踪中基于孪生网络的追踪算法在对有遮挡物或运动突变的物体进行追踪定位时会出现定位不准确的问题,设计了在线更新网络的视频追踪算法TripLT。该算法采用循环神经网络进行目标位置的预测,并采用全卷积神经网络对目标进行相似度的判定。TripLT算法可预测下一帧的目标位置,以摆脱遮挡物的影响,并且TripLT算法采用在线更新的机制,避免了运动突变的干扰。在数据集VOT和OTB100上的实验结果表明,和已有算法相比,TripLT算法表现出更好的性能。
Aiming at the problem of inaccurate positioning of the tracking algorithm based on the twin network when tracking and locating objects with obstructions or sudden changes in motion,an online update network video tracking algorithm,TripLT,is designed,a recurrent neural network is used to predict the target position,and a full convolutional neural network is used to determine the similarity of the target.The TripLT algorithm can predict the target position of the next frame to get rid of the influence of occluders,and it uses an online update mechanism to avoid the interference effects of sudden changes in motion.Experiments on the data set VOT and OTB100 show that the TripLT algorithm shows better performance than other algorithms.
作者
曾上游
贾小硕
李文惠
ZENG Shang-you;JIA Xiao-shuo;LI Wen-hui(College of Electronic Engineering,Guangxi Normal University,Guilin 541004,China)
出处
《计算机工程与科学》
CSCD
北大核心
2021年第3期480-485,共6页
Computer Engineering & Science
基金
国家自然科学基金(11465004)。
关键词
视频追踪
孪生网络
循环神经网络
全卷积神经网络
在线更新
video tracking
twin network
recurrent neural network
full convolutional neural network
online update