摘要
作者研究了关于有穷级整函数两个差分算子的分担值问题,证明了:令f(z)是满足λ(f-a(z))<ρ(f)的有穷级超越整函数,其中a(z)(∈S(f))是整函数且满足ρ(a(z))<1,并令η(∈C)是常数且满足△^(2)_(η)f(z)≠0.如果△^(2)_(η)f(z)和Δ_(η)f(z)CM分担Δ_(η)a(z),其中Δ_(η)a(z)∈S(Δ^(2)_(η)f(z)),那么f(z)=a(z)+Be^(Az),其中A,B是两个非零常数且a(z)退化为常数.
In this paper,the authors study the shared-value problem concerning two difference operators of an entire function with finite order.They prove that:Let f(z)be a finite order transcendental entire function such thatλ(f-a(z))<ρ(f),where a(z)(∈S(f))is an entire function and satisfiesρ(a(z))<1,and letη(∈C)be a constant such thatΔ^(2)_(η)f(z)≠0.IfΔ^(2)_(η)f(z)andΔ_(η)f(z)shareΔ_(η)a(z)CM,whereΔ_(η)a(z)∈S(Δ^(2)_(η)f(z)),then f(z)=a(z)+Be^(Az),where A,B are two nonzero constants and a(z)reduces to a constant.
作者
陈创鑫
张然然
CHEN Chuangxin;ZHANG Ranran(College of Computational Sciences,Zhongkai University of Agriculture and Engineering,Guangzhou 510225,China;Corresponding author.Department of Mathematics,Guangdong University of Education,Guangzhou 510303,China)
出处
《数学年刊(A辑)》
CSCD
北大核心
2021年第1期11-22,共12页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.11801093)
广东省青年创新人才项目(No.2018KQNCX117)
广东省特色创新项目(No.2019KTSCX119)
广东省自然科学基金(No.2018A030313508,No.2020A1515010459)的资助。
关键词
差分算子
整函数
BOREL例外值
分担值
Difference operator
Entire function
Borel exceptional value
Sharing value