期刊文献+

关于Landau常数和Euler-Mascheroni常数的渐近展开式以及Stirling级数的系数 被引量:2

Coefficients of Asymptotic Expansions for Landau Constants and Euler-Mascheroni Constant and Stirling Series
下载PDF
导出
摘要 文章给出一个递推关系式来确定Landau常数的渐近展开式的系数.考虑了Euler-Mascheroni常数和n!的渐近展开式,并给出了递推关系式来确定每个展开式的系数,没有利用Bernoulli数. In this paper,the author gives a recurrence relation for determining the coefficients of asymptotic expansion for the Landau constants.The author also considers asymptotic expansions for the Euler-Mascheroni constant and n!,and he gives a recurrence relation for determining the coefficients of each expansion,without using the Bernoulli numbers.
作者 陈超平 CHEN Chaoping(School of Mathematics and Informatics,Henan Polytechnic University,Jiaozuo 454000,Henan,China)
出处 《数学年刊(A辑)》 CSCD 北大核心 2021年第1期89-104,共16页 Chinese Annals of Mathematics
基金 河南省高等学校重点科研项目(No.20B110007)的资助。
关键词 Landau常数 Euler-Mascheroni常数 Stirling级数 渐近展开式 Landau constants Euler-Mascheroni constant Stirling series Asymptotic expansion
  • 相关文献

参考文献2

二级参考文献24

  • 1熊规景.Lebesgue常数估值的新探索[J].数学物理学报(A辑),1994,14(1):68-89. 被引量:1
  • 2Landau E. Abschtzung der Koeffzientensumme einer Potenzreihe. Arch Math Phys, 1913, 21:42-50 250-255.
  • 3Watson G N. The constants of Landau and Lebesgue. Quart J Math Oxford Ser, 1930, 1:310 318.
  • 4Brutman L. A sharp estimate of the Landau constants. J Approx Theory, 1982, 34(2): 217-220.
  • 5Falaleev L P. Inequalities for the Landau constants. Siberian Math J, 1991, 32(5): 896-897.
  • 6Chen C P. Approximation formulas for Landau's constants. J Math Anal Appl, 2012, 387(2): 916-919.
  • 7Chen C P. Sharp bounds for the Landau constants. Ramanujan J, 2013, 31(3): 301 313.
  • 8Cvijovid D, Srivastava H M. Asymptotics of the Landau constants and their relationship with hypergeo- metric functions. Taiwan Residents J Math, 2009, 13(3): 855 870.
  • 9Granath H. On inequalities and asymptotic expansions for the Landau constants. J Math Anal Appl, 2012, 386(2): 738-743.
  • 10Li , Li S, Xu S, Zhao Y. Full asymptotic expansions of the Landau constants via a difference equation approach. Appl Math Comput, 2012, 219(3): 988-995.

共引文献4

同被引文献2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部