摘要
为了更好地评价阅读理解模型的鲁棒性,基于Dureader数据集,通过自动抽取和人工标注的方法,对过敏感、过稳定和泛化3个问题分别构建测试数据集。还提出基于答案抽取和掩码位置预测的多任务学习方法。实验结果表明,所提方法能显著地提高阅读理解模型的鲁棒性,所构建的测试集能够对模型的鲁棒性进行有效评估。
In order to better evaluate the robustness of Machine Reading Comprehension(MRC)models,this paper builds three test sets from Dureader by automatically extracting and manually annotating,consisting of oversensitivity,over-stability,and generalization.In addition,this paper proposes a multi-task learning framework with answer extraction task and masked position prediction task.Experimental results demonstrate that proposed method gains significant robustness improvements and show the effectiveness of the three test sets on evaluating the robustness of MRC models.
作者
李烨秋
唐竑轩
钱锦
邹博伟
洪宇
LI Yeqiu;TANG Hongxuan;QIAN Jin;ZOU Bowei;HONG Yu(School of Computer Science and Technology,Soochow University,Suzhou 215000;Institute for Infocomm Research,Singapore 138632)
出处
《北京大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2021年第1期16-22,共7页
Acta Scientiarum Naturalium Universitatis Pekinensis
基金
国家自然科学基金(61703293,61672368,61672367)
江苏高校优势学科建设工程项目资助。
关键词
机器阅读理解
鲁棒性
中文语料库
machine reading comprehension
robustness
Chinese corpus