期刊文献+

基于小波变换的单通道信号盲分离方法 被引量:3

Single channel signal blind separation method based on wavelet transform
下载PDF
导出
摘要 单通道信号的盲分离是非合作信号处理领域的热点问题,文中给出一种利用小波变换有效实现信号分离的方法。首先推导了小波变换的模关于尺度ac具有对称性的结论,进而利用该对称性及小波变换的线性、冗余性和未与其他信号分量重叠的部分尺度的小波变换重构时域对应的信号分量,实现频域部分重合的单通道混合信号的盲分离。仿真结果验证了该算法能够有效实现信号分离,分离效果与信号频谱分离度和输入信噪比成正比,分离结果满足后续对分离信号处理的需求。 Blind separation of single-channel signals is a hot topic in the field of non-cooperative signal processing.Under this background,a method of signal separation using wavelet transform is proposed.The conclusion that the wavelet transform modulus is of symmetry on the scale ac is deduced,and then the symmetry,the linearity and redundancy of wavelet transform,and the signal components(corresponding with time domain)reconstructed by partial scale wavelet transform which does not overlap with other signal components are used to realize the blind separation of single-channel mixed signals which is partially-overlapped in frequency domain.The simulation results show that the proposed algorithm can effectively achieve signal separation,and its separation effect is proportional to the signal spectrum separation degree and input SNR.In addition,the separation results can meet the requirements of processing the separated signal subsequently.
作者 解辉 李猛 田建刚 岳夕彪 杨庆培 XIE Hui;LI Meng;TIAN Jiangang;YUE Xibiao;YANG Qingpei(Shijiazhuang Campus of Army Engineering University of PLA,Shijiazhuang 050003,China;Navy Factory 704,Qingdao 266000,China;Unit 32140 of PLA,Shijiazhuang 050003,China;Unit 66389 of PLA,Shijiazhuang 050003,China)
出处 《现代电子技术》 2021年第7期56-59,共4页 Modern Electronics Technique
基金 河北自然科学基金(F2019506037)。
关键词 信号盲分离 单通道信号 小波变换 通信侦察 信息对抗 信号处理 时频分析 signal blind separation single-channel signal wavelet transform communication reconnaissance information countermeasure signal processing time-frequency analysis
  • 相关文献

参考文献10

二级参考文献86

  • 1高飞,杨平先,孙兴波.基于小波变换与阀值收缩法的图像增强去噪[J].四川理工学院学报(自然科学版),2006,19(2):8-11. 被引量:11
  • 2许策 章新华 高成志.源数目估计对盲源分离算法影响分析.声学技术,2007,26(5):75-77.
  • 3张邦宁,魏安全,郭道省.通信抗干扰技术[M].北京:机械工业出版社,2007:182-184.
  • 4Balan R. Estimator for number of sources using minimum description length criterion for blind sparse source mixtures. Int Conf Independent Component Analysis and Separation, 2007 : 1-8.
  • 5Arberet S, Gribonval R, Bimbot F. A robust method to count and lo- cate audio sources in a stereophonic linear anechoic mixture. Proc IC- ASSP, 2007:536-543.
  • 6Loeseh B, Yang B. Source number estimation and clustering for un- derdetermined blind source separation. International Workshop on Acoustic Echo and Noise Control, 2008.
  • 7万坚,涂世龙,廖灿辉,等.通信混合信号盲分离理论与技术[M].北京:国防工业出版社,2012:88-90.
  • 8CHENG XIEFENG, TAO YEWEI, GUO YUFENG. A new BSS methods of single-channel mixture signal based on ISBF and wavelet[C]//Advances in Neural Networks- ISNN 2008. Berlin : Springer, 2008 : 650-657.
  • 9COMON P. Independent component analysis a new concept[J]. Signal Processing, 1994,36(5): 287-314.
  • 10GAETA M, LACOUME JL. Source separation without a priori knowledge: the maximum likelihood solution[C]// EUSIPCO 90. Barcelona, Spain, 1990 : 621-624.

共引文献28

同被引文献25

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部