期刊文献+

改进Yolo-v3的视频图像火焰实时检测算法 被引量:25

A Real-Time Video Flame Detection Algorithm Based on Improved Yolo-v3
原文传递
导出
摘要 为解决现有视频图像火焰检测方法精度低、速度慢的问题,提出了改进Yolo-v3的视频火焰实时检测算法。首先,在特征提取阶段,通过进一步融合多尺度特征提高网络对图像浅层信息的学习能力,以实现小火焰区域的精准识别;其次,在目标检测阶段,利用改进的K-means聚类算法优化多尺度先验框以适应火焰不同尺寸;最后,在改进Yolo-v3的视频火焰检测之后,利用火焰特有的闪烁特征对检测结果中的误检帧进行排除,进一步提高检测精度。从精度和速度两个方面对视频火焰进行检测,并与近年来先进的火焰检测算法对比,结果表明,该方法准确率均值可达到98.5%,误检率低至2.3%,平均检测速率为52帧/s,在精度和速度方面皆有更好的表现。 Objectives:In order to solve the problems of the low accuracy and the slow speed of the existing video image flame detection methods,we propose a real-time video flame detection algorithm based on improved Yolo-v3 to achieve real-time and efficient detection of flames in the video.Methods:Firstly,in the feature extraction stage,the multi-scale detection network is improved.We add a new-scale feature and then improved the network s ability to learn the shallow information of the images by further integrating multi-scale features.Using this method,the accurate identification of small flame is achieved.Secondly,in the target detection stage,we use the improved K-means clustering algorithm to optimize the multi-scale prior frames,and make them adapt to the changing posture and shape of the flame.Finally,after detecting video flames based on improved Yolo-v3,we use the unique flicker characteristics of the flame to check the video again,and eliminate the false detection frame in the detection result.And in this method the detection accuracy is further improved.Results:In order to prove the effectiveness of our method,the video flames are detected from both accuracy and speed,and the results are compared with the advanced flame detection methods in recent years.The results show that the average accuracy rate of our method can reach 98.5%,the false detection rate is as low as 2.3%,and the average detection rate is 52 frames/s,so our method has better performance in terms of accuracy and speed.Conclusions:The effectiveness of this method is proved through multiple sets of experiments.Comparing with the existing flame detection methods,our method can be more effectively applied to video flame detection.
作者 赵媛媛 朱军 谢亚坤 李维炼 郭煜坤 ZHAO Yuanyuan;ZHU Jun;XIE Yakun;LI Weilian;GUO Yukun(Faculty of Geosciences and Environment Engineering,Southwest Jiaotong University,Chengdu 611756,China)
出处 《武汉大学学报(信息科学版)》 EI CAS CSCD 北大核心 2021年第3期326-334,共9页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金(41871289) 四川省自然资源厅科研项目(KJ-2020-4) 四川省青年科技创新研究团队项目(2020JDTD0003)。
关键词 火焰检测 视频图像 Yolo-v3 闪烁特征 多尺度检测 flame detection video image Yolo-v3 flicker characteristics multi-scale detection
  • 相关文献

参考文献4

二级参考文献27

  • 1李德仁.利用遥感影像进行变化检测[J].武汉大学学报(信息科学版),2003,28(S1):7-12. 被引量:230
  • 2贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 3沈诗林,于春雨,袁非牛,陈志斌,张永明.一种基于视频图像相关性的火灾火焰识别方法[J].安全与环境学报,2007,7(6):96-99. 被引量:24
  • 4Vipin V. Image processing based forest fire detection [ J ]. International Journal of Emerging Technology and Advanced Engineering, 2012,2(2) :87-95.
  • 5Angayarkkani K, Radhakrishnan N. Efficient forest fire de- tection system: A spatial data mining and image processing based approach [ J ]. International Journal of Computer Sci- ence and Network Security, 2009,9(3) :100-107.
  • 6Kandil M, Salama M. A new hybrid algorithm for fire vi- sion recognition [ C ]// EUROCON 2009. 2009: 1460- 1466.
  • 7Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition [ J ]. Proceedings of the IEEE, 1998,86( 11 ) :2278-2324.
  • 8Szarvas M, Yoshizawa A, Yamamoto M, et al. Pedestrian detection with convolutional neural networks [ C ]// Pro- ceedings of the 2005 IEEE Intelligent Vehicles Symposium. 2005 : 224 -229.
  • 9Lawrence S, Giles C L, Tsoi A C, et al. Face recognition: A convolutional neural-network approach [ J ]. IEEE Trans- actions on Neural Networks, 1997,8 (1) :98-113.
  • 10Hubel D H, Wiesel T N. Receptive fields, binocular inter- action and functional architecture in the cat' s visual cortex [J]. The Journal of physiology, 1962,160(1):106-154.

共引文献84

同被引文献173

引证文献25

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部