期刊文献+

随机利率混合分数布朗运动模型下的再装期权定价

Pricing reload option under stochastic interest rate and mixed fractional Brownian motion environment
下载PDF
导出
摘要 在假定标的资产价格服从混合分数布朗运动驱动的随机微分方程以及利率服从Vasicek利率模型的基础上,利用鞅理论构建数学模型,借助测度变换的方法获得了再装期权的定价公式. In this paper we assume that the underlying asset price follows a stochastic differential equation driven by mixed fractional Brownian motion process and the interest rate follows the Va-sicek’s interest rate framework.Applying martingale theory and Girsanov’s Theorem we construct the mathematical model and obtain the pricing formula for reload option by the approach of the change of measure.
作者 张晓倩 刘会利 ZHANG Xiaoqian;LIU Huili(School of Mathematical Science,Hebei Normal University,Shijiazhuang 050024,China)
出处 《商丘师范学院学报》 CAS 2021年第3期1-6,共6页 Journal of Shangqiu Normal University
基金 国家自然科学基金资助项目(11501164) 河北省自然科学基金资助项目(A2019205299) 河北省教育厅基金资助项目(QN2019073) 河北师范大学重点基金资助项目(L2019Z01)。
关键词 混合分数布朗运动 再装期权 测度变换 GIRSANOV定理 分数Girsanov定理 mixed fractional Brownian motion reload option change of measure Gisanov’s theorem fractional Gisanov’s theorem
  • 相关文献

参考文献7

二级参考文献45

  • 1刘韶跃,杨向群.分数布朗运动环境中欧式未定权益的定价[J].应用概率统计,2004,20(4):429-434. 被引量:50
  • 2傅强,喻建龙.再装期权定价及其在经理激励中的应用[J].商业研究,2006(11):147-150. 被引量:6
  • 3Black F.,Scholes M..The Pricing of Option and Corporate Liabilities[J].Journal of Political Economy,1978,81:637-659.
  • 4Johnson S A,Tian Y S.The value and incentive effects of nontraditional executive stock option plans[J].Journal of Finance Economics,2000,(57):3-34.
  • 5Bjōrk, T., Interest Rate Theory, Financial Mathematics: Lectures given at the 3rd session of C.I.M.E. held in Bressamone, Italy, 1996, Springer-Verlag, Berlin Heideberg, 1997.
  • 6Chan, T., Pricing contingent claims on stocks driven by Lévy process, Annals of Applied Probability, 9(1999), 504-528.
  • 7Fōllmer, H. & Schweizer, M., Hedging of Contingent Claims under Incomplete Information, Gordon and Breach, NewYork, 1991.
  • 8Geman, H. & El Karoni, N. & Rocher, J.C., Changes of numeraire, changes of probability and option pricing, Journal of Applied probability, 32(1995), 443-458.
  • 9Harrison, J.M. & Kreps, D., Martingales and arbitrage in multiperiod securites markets, Journal of Economic Theory,20(1979), 381-408.
  • 10He, S. & Wang, J. & Yan, J., Semimatingale and Stochastic Calculus, CRC Press, Baca Batoa, 1992.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部