摘要
为实现主动配电网调峰需求,以包含PV、各类柔性负荷、VRB储能装置为基础建立工业园区主动配电系统模型,同时建立最小代价的目标函数。为求解该目标函数,考虑到模型参数多的问题,提出一种模拟退火改进Q学习优化算法对目标函数进行求解。结果表明,改进算法无论是在算法的收敛速度,还是在负荷调整方面,都具有非常明显优势。
in order to realize the peak load regulation demand of active distribution network,the active distribution system model of industrial park is established based on PV,various flexible loads and VRB energy storage devices,and the objective function with minimum cost is established.In order to solve the objective function,a simulated annealing improved Q-learning optimization algorithm is proposed to solve the problem of multiple model parameters.The results show that the improved algorithm has obvious advantages in both convergence speed and load adjustment.
作者
邢敖
李云
XING Ao;LI Yun(School of Electrical Engineering,Guangxi University,Nanning 530004,China;State Grid Jibei Electric Power Grid Co.,Ltd,Zhangjiakou Power Supply Company,Zhangjiakou Hebei 075000,China)
出处
《自动化与仪器仪表》
2021年第3期150-153,157,共5页
Automation & Instrumentation
基金
国家电网公司科技项目(基于信息物理系统的复杂配电网建模与数模混合仿真技术研究)(No.PD71-18-001)。
关键词
调峰
主动配电系统
VRB储能装置
peak load regulation
active distribution system
VRB energy storage device