期刊文献+

非线性离散系统基于扩展Kalman滤波的鲁棒融合状态估计 被引量:2

Robust fusion state estimation based on extended Kalman filtering for nonlinear discrete-time systems
下载PDF
导出
摘要 非线性系统的状态估计问题是现代控制理论研究中不可或缺的一部分。提出一种基于扩展Kalman滤波的鲁棒融合状态估计算法,它是在已有的扩展Kalman滤波算法的基础上,通过引入CI状态融合来实现的。融合算法的引入能有效填补扩展Kalman滤波器在模型线性化时所带有的精度损失;CI融合算法因为避免了局部估计误差互协方差的计算而变得简单易行,尤其便于实际工程应用。仿真实验结果表明了所提出的多传感器非线性离散系统的CI融合状态估计算法可有效减少估计误差,具有一定的有效性和可行性。 State estimation problem for nonlinear system is an indispensable part of modern control theory.A robust fusion state estimation algorithm based on extended Kalman filter is proposed.It is implemented by introducing CI state fusion algorithm on the basis of existing extended Kalman filter algorithm.The introduction of fusion algorithm can effectively fill the accuracy loss of extended Kalman filter in model linearization.CI fusion algorithm becomes simple because of avoiding calculation of the local estimation error cross covariance,especially for practical engineering applications.The simulation results also show that the proposed CI fusion state estimation algorithm for multi-sensor nonlinear discrete-time systems can effectively reduce the estimation errors,and has certain effectiveness and feasibility.
作者 马光鹏 孙小君 MA Guang-Peng;SUAN Xiao-Jun(School of Electronic Engineering,Heilongjiang University,Harbin 150080,China;Key Laboratory of Information Fusion Estimation and Detection,Heilongjiang Province,Harbin 150080,China)
出处 《黑龙江大学工程学报》 2021年第1期75-81,共7页 Journal of Engineering of Heilongjiang University
基金 国家自然科学基金项目(61104209)。
关键词 信息融合 鲁棒融合 CI融合 扩展Kalman滤波 非线性系统 information fusion robust fusion CI fusion extended Kalman filtering nonlinear system
  • 相关文献

参考文献8

二级参考文献54

  • 1孙春玲,孙百瑜.混沌序列在信息保密中的应用研究[J].黑龙江大学自然科学学报,2005,22(3):411-415. 被引量:2
  • 2潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 3熊伟,陈立奎,何友,张晶炜.有色噪声下的不敏卡尔曼滤波器[J].电子与信息学报,2007,29(3):598-600. 被引量:11
  • 4聂建亮,张卉.基于自适应Kalman滤波的BP神经网络在导航中的应用[J].大地测量与地球动力学,2007,27(3):56-59. 被引量:4
  • 5Gordon N J, Salmond D J and Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [ J ]. IEE Proceedings-f, 1993,140 (2) : 107 - 113.
  • 6De Freitas M J F G, et al. Sequential Monte Carlo methods to train neural network models [ J ]. Neural Computation, 2000,12:955 - 993.
  • 7Fagin S L. Recursive linear regression theory, optimal filter theory and error analysis of optimal system [ J ]. IEEE Int. Convert, Record, 1964,12:216 - 240.
  • 8Sorenson H W and Sacks J E. Recursive fading memory filtering[J]. Inform, SCI,1971,3:101 - 119.
  • 9Rudolph van der Merwe. Sigma-point Kalman filters for probabilistic inference in dynamic state - space models [ D]. Oregon Health & Science University,2004.
  • 10Doucet A, Gordon N J and Krishanmurthy V. Particle filters for state estimation of jump Markov linear systems [ J ]. IEEE Trans on Signal Processing, 2001,49 (3) :613 -624.

共引文献84

同被引文献11

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部