摘要
文章主要研究了一类子群非互素图,给出了有限群G的子群非互素图的定义,群G是一个有限群,G的子群非互素图Γ_(2^(G))是以G的非单位真子群为顶点,Γ_(2^(G))中的两个顶点A、B相连当且仅当(|A|,|B|)≠1,通过研究得到有限群的子群非互素图的平面化的充要条件。
A type of subgroup non-coprime graphs is studied,and the definition of subgroup non-coprime graph of finite group G is made.The group G is a finite group,whose subgroup non-coprime graph Γ_(2^(G)) is taking G’s nonunit proper subgroup as vertex with two vertices A,B connected when and only when(|A|,|B|)≠1.The necessary and sufficient conditions for the planarity of the subgroup non-coprime graph of a finite group are obtained through the study.
作者
张花连
蔡江华
刘太德
徐海燕
ZHANG Hua-lian;CAI Jiang-hua;LIU Tai-de;XU Hai-yan(School of Elementary Education,Pingxiang University,Pingxiang Jiangxi 337000,China)
出处
《萍乡学院学报》
2020年第6期7-11,35,共6页
Journal of Pingxiang University
基金
江西省教育厅科学技术研究项目(GJJ191158、GJJ191156)
萍乡学院青年科研基金项目(2019D0209)。
关键词
有限群
子群非互素图
平面化
finite group
the subgroup non-coprime graph
planarity