期刊文献+

基于katugampola分数阶积分的Hermite-Hadamard型不等式 被引量:7

Hermite-Hadamard Type Inequalities Based on Katugampola Fractional Integrals
下载PDF
导出
摘要 分数阶微积分是应用数学的一个重要领域,在自然科学和工程技术等领域有着广泛的实际应用.基于katugampola分数阶积分,利用函数的拟凸性和一些经典不等式,建立了Hermite-Hadamard型不等式.当对参数ρ→1时取极限,就得到了Riemann-Liouville分数阶积分的相应结论. Fractional calculus is a field of applied mathematics and has practical applications and profound impact in science,engineering,mathematics,economics,and other fields.In this paper,based on Katugampola fractional integrals and by using quasi-convexity and some classical inequalities,the authors establish some new Hermite-Hadamard type inequalities.The obtained inequalities generalize the corresponding results for Riemann-Liouville fractional integrals by taking limits when a parameterρ→1.
作者 海旭冉 王淑红 HAI Xuran;WANG Shuhong(College of Mathematics and Physics,Inner Mongolia University for Nationalities,Tongliao 028000,China)
出处 《湖北民族大学学报(自然科学版)》 CAS 2021年第1期48-52,共5页 Journal of Hubei Minzu University:Natural Science Edition
基金 内蒙古自治区自然科学基金项目(2019MS01007 2018MS01008) 内蒙古民族大学博士科研启动基金项目(BS402).
关键词 katugampola分数阶积分 HERMITE-HADAMARD不等式 拟凸性 Katugampola fractional integral Hermite-Hadamard inequality quasi-convexity
  • 相关文献

参考文献2

二级参考文献13

  • 1S S Dragomir, R P Agarwal.Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl[J].Math Lett, 1995, (5) : 91-95.
  • 2U S Kirmaci.Inequalities for di § erentiable mappings and applications to special means of real numbers and to midpoint formula[J].Appl Math Comp, 2004,147: 137-146.
  • 3M Z Sankaya, N Aktan.On the generalization some integral inequalities and their applications [J].2011, arXiv: 1005.2879v1 [math.CA].
  • 4FURUTA T,Micic Hot J,Pecaric J,etc.Mond-Pecaric Method in Operator Inequalities,Monographs in Inequalities[M].Zagreb:Element,2005:210-430.
  • 5GHAZANFARI A G,SHAKOORI M,BARANI A,et al.Hermite-Hadamard type inequality for operator preinvex functions[J].ar Xiv,2013,9 pages.
  • 6MOHAN S R,NEOGY S K.On invex sets and preinvex function[J].J Math Anal Appl,1995,189:901-908.
  • 7YANG X M,LI D.On properties of preinvex functions[J].J Math Anal Appl,2001,256:229-241.
  • 8WANG S H,LIU X M.Hermite-Hadamard type inequalities for operator s-preinvex functions[J].J Nonlinear Sci Appl,2015,8:1070-1081.
  • 9GHAZANFARI A G.he Hermite-Hadamard type inequalities for operator s-convex functions[J].Journal of Advanced Research in Pure Mathematics,2014,6(3):52-61.
  • 10XI B Y,Qi F.Inequalities of Hermite-Hadamard type for extended s-convex functions and applications to means[J].Hacettepe University Bulletin of Natural Sciences&Engineering,2014,42(3):243-257.

共引文献14

同被引文献9

引证文献7

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部