期刊文献+

基于神经网络的语谱图情感分类算法 被引量:4

Emotion classification algorithm of spectral map based on neural network
下载PDF
导出
摘要 在语音情感分类算法中,目前大多数基于深度学习的方法存在没有考虑时域和频域的特征进行建模,且网络训练时间长、识别率不高的问题,提出了一种基于神经网络的语谱图情感分类算法。首先选取语谱图作为模型的输入,且为了减少语音情感特征提取过程中浅层特征和训练时上下文细节特征的损失,神经网络模型采用带有残差块的ResNet18网络和嵌入注意力机制的双向长短时记忆(BLSTM)网络的融合模型作为改进,利用ResNet18提取语谱图特征,然后使用注意力机制对其进行特征加权,在BLSTM网络中对加权后的特征进行训练和分类,最终该模型在CASIA数据集上的识别率分别为88.2%,与其他方法相比,所提算法有更好的语音情感分类效果,并且大幅度缩短了整体训练时间。 Aiming at the problem of low voice emotion recognition rate, an emotion classification algorithm based on neural network is proposed. Firstly, in order to reduce the loss of shallow features and contextual details during training of speech emotion feature extraction, this paper proposes a fusion model of ResNet18 network with residual blocks and a bi-directional long-term and short-term memory(BLSTM) network embedded with attention mechanism as an improvement. ResNet18 extracts the features and normalization of the spectrogram, and then uses the attention mechanism to weight the features, and trains and classifies the weighted features in the BLSTM network. In the end, the recognition rates of the model on the CASIA dataset dataset are 88.2%, respectively. The comparison with the existing literature recognition rates verifies the advantages of this algorithm.
作者 金鹭 张寿明 Jin Lu Zhang;Shouming(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
出处 《电子测量技术》 2020年第24期57-63,共7页 Electronic Measurement Technology
关键词 图像处理 残差网络 双向长短时记忆网络 注意力机制 深度学习 image processing residual network BLSM network attention mechanism deep learning
  • 相关文献

参考文献13

二级参考文献94

  • 1谷建清,郭永彩,高潮,徐梅宣.二维Gabor小波在虹膜识别中的应用[J].仪器仪表学报,2005,26(z2):395-396. 被引量:6
  • 2姚永强,易本顺,姚远.航空噪声背景下的语音端点检测和语音增强[J].电声技术,2006,30(1):36-39. 被引量:6
  • 3苑玮琦,徐露,林忠华.一种基于人眼图像灰度分布特征的虹膜定位算法[J].光电子.激光,2006,17(2):226-230. 被引量:19
  • 4JAIN A, BOLLE R, PAMKANTI S. Biometrics: personal identification in networked society[M]. Kluwer Academic Publishers, 1999: 1241.
  • 5DAUGMAN J G. High confidence visual recognition of persons by a test of statistical independence[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1993, 15(11):1148-1161.
  • 6DAUGMAN J G. Statistical richness of visual phase information: Update on recognizing persons by iris patterns[J]. International Journal of Computer Vision, 2001, 45(1):25-38.
  • 7DAUGMAN J G, The importance of being random: Statistical principles of iris recognition[J]. Pattern Recognitionm 2003, 36(2):279-291.
  • 8WILDES R E Iris Recognition: An emerging biometric technology[J]. Proceedings of the IEEE, 1997, 85(9): 1348-1363.
  • 9BOLES W W, BOASHAH B. A human identification technique using images of the iris and wavelet transform[J]. IEEE Trans. on Signal Processing, 1998, 46(4): 1185-1188.
  • 10LIM S, LEE K, BYEON O, et al. Efficient iris recognition through improvement of feature vector and classifier[J]. ETRI Journal, 2001,23(2):61-8.5.

共引文献1916

同被引文献31

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部