期刊文献+

Highly interconnected macroporous MBG/PLGA scaffolds with enhanced mechanical and biological properties via green foaming strategy

下载PDF
导出
摘要 In this study,mesoporous bioactive glass particles(MBGs) are incorporated into poly(lactic-co-glycolic acid)(PLGA) to fabricate highly interconnected macroporous composite scaffolds with enhanced mechanical and biological properties via a developed supercritical carbon dioxide(scCO_(2)) foaming method Scaffolds show favorable highly interconnected and macroporous structure through a high foaming pressure and long venting time foaming strategy.Specifically,scaffolds with porosity from 73% to 85%,pore size from 120 μm to 320 μm and interconnectivity of over 95% are controllably fabricated at MBG content from 0 wt% to 20 wt%.In comparison with neat PLGA scaffolds,composite scaffolds perform improved strength(up to 1.5 folds) and Young's modulus(up to 3 folds).The interconnected macroporous structure is beneficial to the ingrowth of cells.More importantly,composite scaffolds also provide a more promising microenvironment for cellular proliferation and adhesion with the release of bioactive ions.Hopefully,MBG/PLGA scaffolds developed by the green foaming strategy in this work show promising morphological,mechanical and biological features for tissue regeneration.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第1期426-436,共11页 中国化学工程学报(英文版)
基金 the National Natural Science Foundation of China (Grant No. 21676083) the Fundamental Research Funds for the Central Universities 111 Project (Grant No. B20031)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部