摘要
在点单系统中为方便食堂人员明确备菜的量,设计一款基于BP神经网络的备菜预测算法。根据设计App中的前期统计值作为训练数据,采用有导师学习方式,得到该系统的预测算法。根据该算法,得到某菜品30天中午的预测销售情况,并与实际情况进行对比。实验表明该点单预测算法能在一定程度上预测某菜品的销售量,起到防止浪费菜品的作用。
In order to get the quantity of prepared food accuracy for canteen staff system,a prepared food prediction algorithm based on BP neural net⁃work was designed.According to the preliminary statistical values in the designed App as the training data,the predictive algorithm of the system was obtained by using the tutor learning method.According to this algorithm,the sales forecast of a dish at noon for 30 days is ob⁃tained and compared with the actual situation.To a certain extent,the experiment shows that the algorithm can predict the sales of the dishes and prevent the waste of dishes.
作者
王婷婷
吴新蕊
张洋
王宇春
WANG Ting-ting;WU Xin-rui;ZHANG Yang;WANG Yu-chun(Department of Biomedical Engineering,Jiamusi University,Jiamusi 154007)
出处
《现代计算机》
2021年第5期20-24,共5页
Modern Computer
基金
黑龙江省大学生创新创业训练计划项目(No.201910222105)
2018黑龙江省省属本科高校基本科研业务费科研项目(No.2018-KYYWF-0943)。
关键词
BP神经网络
备菜量预测
梯度下降学习算法
BP Neural Network
Forecast the Quantity of Prepared Vegetables
Gradient Descent Learning Algorithm