摘要
以小数据集为样本进行卷积神经网络模型的训练过程,容易出现所得到的神经网络模型泛化能力不足的问题。传统的处理方法大都通过数据增强的方式来提高训练数据的样本总数。本文选取多个网络模型进行对比实验,验证不同神经网络在训练过程中是否使用数据随机增强方式的模型识别准确率提高的效果,为如何选取小数据集样本训练神经网络提供参考。
The process of training a convolutional neural network model with a small data set as a sample is prone to insufficient generalization ability of the neural network model obtained by training. In the face of this problem, most of the traditional processing methods are to increase the total number of training data samples through data enhancement to achieve the purpose of improving the accuracy of the neural network model. This paper selects multiple network models to conduct comparative experiments to verify whether different neural networks use random data enhancement methods to improve the accuracy of model recognition during the training process. Provide reference for the selection of training neural network with small data set samples.
作者
黄章红
李梦杰
张浩
HUANG Zhanghong;LI Mengjie;ZHANG Hao(School of Information Science and Engineering,Hunan University of Information Technology,Changsha,China,410100)
出处
《福建电脑》
2021年第3期9-12,共4页
Journal of Fujian Computer
基金
湖南省大学生创新创业训练计划项目“面向深度学习的人脸识别技术研究与实现”(No.S201913836001)
湖南省教育厅科学研究项目“面向领域知识图谱的虚拟学习环境关键技术研究”(No.19A350)资助。
关键词
人脸识别
卷积神经网络
图像增强
Face Recognition
Convolutional Neural Network
Image Enhancement