期刊文献+

数据增强策略在人脸识别技术实现的研究 被引量:2

Research on the Implementation of Data Enhancement Strategy in Face Recognition Technology
下载PDF
导出
摘要 以小数据集为样本进行卷积神经网络模型的训练过程,容易出现所得到的神经网络模型泛化能力不足的问题。传统的处理方法大都通过数据增强的方式来提高训练数据的样本总数。本文选取多个网络模型进行对比实验,验证不同神经网络在训练过程中是否使用数据随机增强方式的模型识别准确率提高的效果,为如何选取小数据集样本训练神经网络提供参考。 The process of training a convolutional neural network model with a small data set as a sample is prone to insufficient generalization ability of the neural network model obtained by training. In the face of this problem, most of the traditional processing methods are to increase the total number of training data samples through data enhancement to achieve the purpose of improving the accuracy of the neural network model. This paper selects multiple network models to conduct comparative experiments to verify whether different neural networks use random data enhancement methods to improve the accuracy of model recognition during the training process. Provide reference for the selection of training neural network with small data set samples.
作者 黄章红 李梦杰 张浩 HUANG Zhanghong;LI Mengjie;ZHANG Hao(School of Information Science and Engineering,Hunan University of Information Technology,Changsha,China,410100)
出处 《福建电脑》 2021年第3期9-12,共4页 Journal of Fujian Computer
基金 湖南省大学生创新创业训练计划项目“面向深度学习的人脸识别技术研究与实现”(No.S201913836001) 湖南省教育厅科学研究项目“面向领域知识图谱的虚拟学习环境关键技术研究”(No.19A350)资助。
关键词 人脸识别 卷积神经网络 图像增强 Face Recognition Convolutional Neural Network Image Enhancement
  • 相关文献

参考文献10

二级参考文献79

  • 1张立民,刘凯.基于深度玻尔兹曼机的文本特征提取研究[J].微电子学与计算机,2015,32(2):142-147. 被引量:9
  • 2张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 3HUANG Di, SHAN Caifeng, ARDABILIAN M, et al. Local binary patterns and its application to facial image analysis: a survey[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2011, 41(6): 765-781.
  • 4KYPEROUNTAS M, TEFAS A, PITAS I. Salient feature and reliable classifier selection for facial expression classification[J]. Pattern Recognition, 2010, 43(3): 972-986.
  • 5OU Jun, BAI Xiaobo, PEI Yun, et al. Automatic facial expression recognition using Gabor filter and expression analysis[C]//Second International Conference on Computer Modeling and Simulation (ICCMS). Sanya, China, 2010: 215-218.
  • 6LI P, PHUNG S L, BOUZERDOUM A, et al. Improved facial expression recognition with trainable 2-D filters and support vector machines[C]//20th International Conference on Pattern Recognition (ICPR). Istanbul, Turkey, 2010: 3732-3735.
  • 7AHMED F. Gradient directional pattern: a robust feature descriptor for facial expression recognition[J]. Electronics Letters, 2012, 48(19): 1203-1204.
  • 8HUANG Xiaohua, ZHAO Guoying, ZHENG Wenming, et al. Spatiotemporal local monogenic binary patterns for facial expression recognition[J]. IEEE Signal Processing Letters, 2012, 19(5): 243-246.
  • 9JABID T, KABIR M H, CHAE O. Robust facial expression recognition based on local directional pattern[J]. ETRI Journal, 2010, 32(5): 784-794.
  • 10ZHANG Baochang, GAO Yongsheng, ZHAO Sanqing, et al. Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor[J]. IEEE Transactions on Image Processing, 2010, 19(2): 533-544.

共引文献829

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部