期刊文献+

基于改进卷积神经网络的风电轴承故障诊断策略 被引量:19

Fault diagnosis strategy of a wind power bearing based on an improved convolutional neural network
下载PDF
导出
摘要 针对风电机组滚动轴承故障特征微弱、提取困难、诊断效率低下等问题,提出一种基于改进卷积神经网络(Convolution Neural Network,CNN)的故障诊断算法。改进CNN模型结构,在全连接层前增加新的卷积层,挖掘信号的深层特征以提高模型的泛化能力。对卷积层数据进行批归一化处理,采用带有动量的随机梯度下降训练算法来加速训练速度。详细介绍了改进CNN的工作原理,给出了采用改进CNN进行故障诊断的流程。最后利用凯斯西储大学滚动轴承数据库的数据进行验证。证明该方法不需要预先提取信号的故障特征,可直接实现对轴承的故障特征提取以及故障识别,诊断率高。 The rolling bearing of a wind turbine has problems of weak fault characteristics,difficult extraction and low diagnosis efficiency.To solve these problems we propose a fault diagnosis algorithm based on an improved Convolution Neural Network(CNN).The structure of the CNN model is improved,a new convolution layer is added in front of the full connection layer,the deep features of the signal are excavated to improve the generalization ability of the model,the convolution layer data are standardized,and the stochastic gradient descent with momentum is used to speed up the training speed.The working principle of the improved CNN is introduced in detail,and the flow chart of fault diagnosis with improved CNN is given.Finally,the data of a rolling bearing database at Case Western Reserve University is used to verify the method,and proves that this method does not need to extract the fault features of the signal in advance,and can directly achieve fault feature extraction and fault identification of bearings,and the diagnosis rate is high.
作者 常淼 沈艳霞 CHANG Miao;SHEN Yanxia(Engineering Research Center of Internet of Things Technology Applications of Ministry of Education,Jiangnan University,Wuxi 214122,China)
出处 《电力系统保护与控制》 CSCD 北大核心 2021年第6期131-137,共7页 Power System Protection and Control
基金 国家自然科学基金项目资助(61573167) 中央高校基本科研业务费专项资金资助(JUSRP51510)。
关键词 卷积神经网络 深度学习 风电 滚动轴承 故障诊断 齿轮箱 convolution neural network deep learning wind power rolling bearing fault diagnosis gear case
  • 相关文献

参考文献11

二级参考文献82

  • 1覃剑,彭莉萍,王和春.基于小波变换技术的输电线路单端行波故障测距[J].电力系统自动化,2005,29(19):62-65. 被引量:79
  • 2苗刚,马孝江,任全民.基于J散度的模式分类方法在故障诊断中的应用[J].中国机械工程,2007,18(4):431-433. 被引量:4
  • 3张梅军,唐建,陈江海.基于连续小波灰度图的变速箱故障诊断[J].振动.测试与诊断,2007,27(1):65-66. 被引量:7
  • 4HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceeding of Royal Society A, 1998(454): 903-995.
  • 5Eren Levent, Devaney M J. Bearing damage detection via wavelet packet decomposition of the stator current[J]. IEEE Instrumentation & Measurement, 2004, 53(2): 431-436.
  • 6Climente-Alarc6n V, Antonino-Daviu JA, et al. Use of high order harmonics for diagnosis of simultaneous faults via Wigner-Ville distributions[C]//IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, 2010: 1029-1034.
  • 7YU De-jie, CHENG Jun-sheng, YANG Yu. Application of EMD method and Hilbert spectrum to the fault diagnosis of rolling bearings[J]. Mechanical Systems and Signal Processing, 2005, 19(2): 259-270.
  • 8CHENG Jun-sheng, YU De-jie, YANG Yu. A fault diagnosis approach for rolling bearings based on EMD method and AR model[J]. Mechanical systems and Signal Processing, 2006, 20(2): 350-362.
  • 9RUQIANG YAN, GAO R X. A tour of the Hilbert-Huang transform: an empirical tool for signal analysis[J]. IEEE Instrumentation & Measurement Magazine, 2007, 10(5): 40-45.
  • 10The Case Western Reserve University Bearing Data Center Website. Beating data center seeded fault test data[EB/OL], http://www.eecs.case.edu/laboratory/bearing. 2007.

共引文献2133

同被引文献226

引证文献19

二级引证文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部