期刊文献+

地道风系统地埋管管径对出口空气温度的影响研究 被引量:2

Effect of pipe diameter on outlet air temperature in tunnel air system
原文传递
导出
摘要 构建了空气与地道壁面换热理论模型,用于计算地埋管出口空气温度,通过正交模拟分析了地埋管管径、长度以及进口风速对地埋管出口空气温度的影响,并与数值模拟结果进行对比。结果表明:地埋管管径极差值最大,可达20.4 m,是地埋管出口空气温度的主要影响因素,地埋管长度和进口风速为次要因素;随着管径的增大,出口空气温度随之升高;当管径为0.2 m时,出口空气温度降幅最大,管径大于0.6 m后,降幅逐渐减小,基本趋于稳定值,因此应控制管径在0.2~0.6 m。 The theoretical model of heat transfer between air and tunnel wall was established to calculate the air temperature at the outlet of buried pipe, and the effects of pipe diameter, length and inlet wind speed on the air temperature at the outlet of buried pipe were analyzed through orthogonal simulation. The results showed that the maximum difference of buried pipe diameter is 20.4 m, which is the main factor influencing the air temperature at the outlet of buried pipe, while the length of buried pipe and the wind speed at the inlet are the secondary factors. As the pipe diameter increases, the air temperature at the outlet increases. When the pipe diameter is 0.2 m, the air temperature at the outlet decreases the most. When the pipe diameter is greater than 0.6 m, the decline gradually decreases and basically tends to be stable. So the diameter should be in the scope of 0.2-0.6 m.
作者 宋美艳 王亮 SONG Meiyan;WANG Liang(College of Civil Engineering and Architecture,Southwest University of Science and Technology,Mianyang 621010,China)
出处 《热科学与技术》 CAS CSCD 北大核心 2021年第1期98-104,共7页 Journal of Thermal Science and Technology
基金 国家自然科学基金资助项目(面上项目52078439).
关键词 地道风系统 地埋管 管径 出口空气温度 tunnel system buried pipe pipe diameter outlet air temperature
  • 相关文献

参考文献3

二级参考文献14

  • 1Thanu N M, S awhney R L, Khare R N,et al. An experimental of the thermal performance of an earth-air-pipe system in single pass mode [J]. Solar Energy,2001,71(6) :353 -364.
  • 2Wu H J,Zhu D S,Li J,et al. Thermodynamic analysis of earth cooling system combined with adsorption dehumidification for air conditioning [J]. Journal of South China University of Technology ( Natural Science Edition),2003,31(7) :37 -41.吴会军,朱冬生,李军,
  • 3Krarti M, Kreider J F. Analytical model for heat transfer in an underground air tunnel [J]. Energy Conversion and Management, 1996,37 (10): 1561 - 1574.
  • 4Mihalakakou G, Santamouris M, Asimakopoulos D.Modeling the thermal performance of the earth to air heat exchangers [J]. Solar Energy, 1994,53: 301 - 305.
  • 5Slayer R O. Plant-water Relationships [M]. London: Academic Press, 1971.
  • 6Mihalakakou G,Santamouris M,Asimakopoulos D,et al.On the ground temperature below buildings[J].Solar Energy,1995,55,355-362.
  • 7Carol Gauthier,Marcel Lacroix,Hervé Bernier.Numerrical Simulation of soil heat exchanger-storage systems for greenhouses[J].Solar Energy,1997,60(6):333-346.
  • 8Slayer R O.Plant-water relationships[M].London and New York.Academic Press,1971.
  • 9Kimball B A,Bellany L A.Generation of diurnal solar radiation,temperature,and humidity patterns[J].Energy in Agriculture,1986,5,185-197.
  • 10Schiller G.Earth tubes for passive cooling[R].The development of a transient numerical model for predicting the performance of earth/air heat exchangers[D].Project Report for MS degree,MIT,Mechanical Engineering,1982.

共引文献24

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部