期刊文献+

基于光流法与背景建模法融合的车道线识别算法研究 被引量:7

Based on Fusing Optical Flow Method and Background Modeling for Lane Line Recognition
下载PDF
导出
摘要 为了准确高效地识别无人驾驶车辆行驶过程中的车道线信息,采用光流法与背景建模法相融合的车道线识别算法,针对车辆行驶中的连续视频,对比连续视频帧中车辆前方背景的相对运动,运用光流法检测出背景中特征点的移动方向和距离,再结合背景建模法将背景滤除,混合高斯模型去噪后进行ROI特征区域的提取进一步减少计算量,最后进行车道线的提取与拟合,达到车道线识别与提取的目的。 A lane line recognition algorithm based on fusing the light flow with the background modeling method is presented in order to accurately and efficiently identify the lane line information for driverless vehicle.For continuous video in vehicle driving,the relative motion of the vehicle's front background in the continuous video frame is compared.The moving direction and distance of the feature points in the background are detected by optical flow method,and then the background is filtered by combining with background modeling method.After noise removal,the ROI feature area is extracted to further reduce the computational load.Finally,the lane line is extracted and fitted to identify the lane line information.
作者 都雪静 张美欧 DU Xuejing;ZHANG Meiou(School of Traffic&Transportation,Northeast Forestry University,Harbin 150040,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2021年第3期29-35,99,共8页 Journal of Chongqing University of Technology:Natural Science
基金 中央高校基金项目(2572017DB01) 国家重点项目基金(2017YFC0803901)。
关键词 无人驾驶 光流法 背景建模 车道线识别 driverless vehicle optical flow method background modeling lane line recognition
  • 相关文献

参考文献11

二级参考文献68

  • 1孙继平,吴冰,刘晓阳.基于膨胀/腐蚀运算的神经网络图像预处理方法及其应用研究[J].计算机学报,2005,28(6):985-990. 被引量:30
  • 2段瑞玲,李庆祥,李玉和.图像边缘检测方法研究综述[J].光学技术,2005,31(3):415-419. 被引量:377
  • 3Chiu K Y, Lin S F. Lane detection using color-based segmentation. In: Proceedings of the IEEE Intelligent Vehicles Symposium. Washington D. C., USA: IEEE, 2005. 706-711.
  • 4Azali S, Jason T, Hijazi M H A, Jumat S. Fast lane detection with randomized hough transform. In: Proceedings of the Information Symposium on Information Technology. Kuala Lumpur, Malaysia: IEEE, 2008. 1-5.
  • 5Meuter M, Muller-Schneiders S, Mika A, Hold S, Nunn C, Kummert A. A novel approach to lane detection and tracking. In: Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems. St. Louis, USA: IEEE, 2009. 1-6.
  • 6Banggui Z, Bingxiang T, Jianmin D, Dezhi G. Automatic detection technique of preceding lane and vehicle. In: Proceedings of the IEEE International Conference on Automation and Logistics. Qingdao, China: IEEE, 2008. 1370-1375.
  • 7Xu Jie, Li Xiao-Hu, Wang Rong-Ben, Shi Peng-Fei. Road edge detection technique for auto-navigation of vehicle. Journal of Image and Graphics. 2003, 8(6): 674-678.
  • 8Watanabe A, Naito T, Ninomiya Y. Lane detection with roadside structure using on-board monocular camera. In: Proceedings of the IEEE Intelligent Vehicles Symposium. Xi'an, China: IEEE, 2009. 191-196.
  • 9Liu Fu-Qiang, Tian Min, Hu Zhen-Cheng. Research on vision-based lane detection and tracking for intelligent vehicles. Journal of Tongji University (Natural Science), 2007, 35(11): 1535-1541.
  • 10Wang Y, Teoh E K, Shen D G. Lane detection and tracking using B-Snake. Image and Vision Computing, 2004, 22(4): 269-280.

共引文献110

同被引文献37

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部