期刊文献+

Banach空间中级数弱无条件收敛性的若干等价刻画

Equivalent Characterizations of Weak Unconditional Convergence of Infinite Series in Banach Spaces
下载PDF
导出
摘要 阐述了范数拓扑下赋范空间中无穷级数的无条件收敛性、子列收敛性、有界乘子收敛性、重排收敛性和符号收敛性及对应的Cauchy性质的定义及其之间的关系,回顾了级数绝对收敛性与无条件收敛性的关系,阐述了上述5种收敛性在弱拓扑下的Banach空间中的定义,给出了其相互关系的完整证明,比较了与范数拓扑下的异同。 In the case of Banach spaces under norm topology,definitions of unconditional convergence,subseries convergence,bounded multiplier convergence,reordered convergence and sign convergence and the corresponding Cauchy properties of infinite series were stated.The relationship among the convergences above and the relationship between unconditional convergence and absolute convergence were revisited.The counterparts of the five convergences in Banach spaces under weak topology were provided,as well as a complete proof of their relationship.Similarities of and differences between norm and weak topology were compared.
作者 李瑶 卢霁萌 LI Yao;LU Jimeng(School of Mathematics,Tianjin University,Tianjin 300350,China;School of Mathematical Sciences,Nankai University,Tianjin 300071,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2021年第3期230-236,共7页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金资助项目(51877144)。
关键词 BANACH空间 无穷级数 Cauchy条件 弱拓扑 弱无条件收敛性 Banach spaces infinite series Cauchy condition weak topology weak unconditional convergence
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部