期刊文献+

基于深度学习的目标检测技术综述 被引量:29

Overview on Deep Learning-Based Object Detection
下载PDF
导出
摘要 目标检测是计算机视觉领域中的研究热点.近年来,目标检测的深度学习算法有突飞猛进的发展.基于深度学习的目标检测算法大致可分为基于候选区域和基于回归两大类.基于候选区域的目标检测算法精度高,但是结构复杂,检测速度较慢.而基于回归的目标检测算法结构简单、检测速度快,在实时目标检测领域有较高的应用价值,然而检测精度相对略低.本文总结了基于深度学习的目标检测主流算法,并分析了相关算法的优缺点和应用场景.最后根据深度学习的目标检测算法中存在的困难和挑战,对未来的发展趋势做了思考和展望. Object detection is a research hotspot in the field of computer vision. In recent years, the deep learning algorithms contributing to object detection has developed by leaps and bounds. Objection detection algorithms based on deep learning can be roughly divided into two categories depending on candidate regions and regression, respectively. The object detection algorithms based on candidate regions have high accuracy, but complex structure and low speed of detection. The object detection algorithms based on regression, contrarily, have simple structure, high speed of detection,and thus more applications in the field of real-time object detection, but its detection is with low accuracy. This paper summarizes the mainstream algorithms of object detection based on deep learning and analyzes the advantages and disadvantages of different algorithms and their applications. Finally, this paper predicts the prospects of deep learningbased object detection algorithms according to the existing challenges.
作者 陆峰 刘华海 黄长缨 杨艳 谢禹 刘财喜 LU Feng;LIU Hua-Hai;HUANG Chang-Ying;YANG Yan;XIE Yu;LIU Cai-Xi(Shanghai Chengtou Environment(Group)Co.Ltd.,Shanghai 200331,China;Shanghai Environmental Logistics Co.Ltd.,Shanghai 200333,China;Bai-Tech(Shanghai)Industrial Technology Co.Ltd.,Shanghai 201209,China;Shanghai Baosight Software Co.Ltd.,Shanghai 201203,China)
出处 《计算机系统应用》 2021年第3期1-13,共13页 Computer Systems & Applications
基金 国资委企业技术创新和能级提升资本金支持项目(2017017)。
关键词 深度学习 目标检测 计算机视觉 算法 结构 deep learning object detection computer vision algorithm structure
  • 相关文献

同被引文献177

引证文献29

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部