期刊文献+

基于Kinect的点云配准方法 被引量:5

Point Cloud Registration Method Based on Kinect
下载PDF
导出
摘要 Kinect采集的点云存在点云数量大、点云位置有误差,直接使用迭代最近点(ICP)算法对点云进行配准时效率低.针对该问题,提出一种基于特征点法向量夹角的改进点云配准算法.首先使用体素栅格对Kinect采集的原始点云进行下采样,精简点云数量,并使用滤波器移除离群点.然后使用SIFT算法提取目标点云与待配准点云公共部分的特征点,通过计算特征点法向量之间的夹角调整点云位姿,完成点云的初始配准.最后使用ICP算法完成点云的精细配准.实验结果表明,该算法与传统ICP算法相比,在保证点云配准精度的同时,能够提高点云的配准效率,具有较高的适用性和鲁棒性. The point clouds collected by Kinect have a large quantity and position errors, and it is inefficient to directly apply the Iterative Closest Point(ICP) algorithm to point cloud registration. To solve this problem, we propose an improved point cloud registration algorithm based on the angle between the normal vectors of feature points. First, the voxel grids are used to down sample the original point clouds collected by Kinect and reduce the number of point clouds and a filter is applied to remove the outliers. Then, the Scale Invariant Feature Transform(SIFT) algorithm is employed to extract the common feature points between the target point clouds and the point clouds to be registered, and the angle between the normal vectors of feature points is calculated to adjust the point cloud pose. Thus, the initial registration of the point clouds is completed. Finally, the ICP algorithm is applied to complete the fine registration of the point clouds.The experimental results show that compared with the traditional ICP algorithm, the proposed algorithm, while ensuring the registration accuracy, can improve the registration efficiency of point clouds and has high applicability and robustness.
作者 李若白 陈金广 LI Ruo-Bai;CHEN Jin-Guang(School of Computer Science,Xi’an Polytechnic University,Xi’an 710048,China;Shaoxing Keqiao West-Tex Textile Industry Innovative Institute,Shaoxing 312030,China)
出处 《计算机系统应用》 2021年第3期158-163,共6页 Computer Systems & Applications
基金 柯桥纺织产业创新研究院产学研协同创新项目(19KQYB24)。
关键词 KINECT 点云配准 法向量夹角 点云滤波 ICP算法 Kinect point cloud registration method vector angle point cloud filtering ICP algorithm
  • 相关文献

参考文献9

二级参考文献68

  • 1何群森,王婷婷,陈绍杰.七参数坐标转换及C++程序实现[J].测绘通报,2012(S1):172-174. 被引量:10
  • 2崔江涛,刘卫光,周利华.一种多分辨率高维图像特征匹配算法[J].光子学报,2005,34(1):138-141. 被引量:12
  • 3E. Solaberrieta,R. Minguez,L. Barrenetxea,E. Sierra,O. Etxaniz.Computer-aided dental prostheses construction using reverse engineering[J]. Computer Methods in Biomechanics and Biomedical Engineering . 2014 (12)
  • 4Villaverde A F,Banga J R.Reverse engineering and identification in systems biology:strategies,perspectives and challenges. Journal of the Royal Society Interface . 2014
  • 5Zhou, Mingdong,Wang, Michael Yu.Engineered model simplification for simulation based structural design. Computer-Aided Design and Applications . 2012
  • 6Besl P J,McKay H D.A method for registration of 3-Dshapes[J].IEEE Transactions on Pattern Analysis and MachineIntelligence,1992,14(2):239-256.
  • 7Sharp G C,Lee S W,Wehe D K.ICP registration usinginvariant features[J].IEEE Transactions on Pattern Analysisand Machine Intelligence,2002,24(1):90-102.
  • 8Basdogan C,Oztireli A C.A new feature based method forrobust efficient rigid-body registration of overlapping pointclouds[J].The Visual Computer,2008,24(7-9):679-688.
  • 9Dai J J,Yang J.A novel two-stage algorithm for accurateregistration of 3-D point clouds[C]//2011 International Conferenceon Multimedia Technology,2011:6187-6191.
  • 10Khoshelham K,Elberink S O.Accuracy and resolution ofkinect depth data for indoor mapping applications[J].Sensors,2012,12(2):1437-1454.

共引文献138

同被引文献39

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部