期刊文献+

Image Classification with Superpixels and Feature Fusion Method

下载PDF
导出
摘要 This paper presents an effective image classification algorithm based on superpixels and feature fusion.Differing from classical image classification algorithms that extract feature descriptors directly from the original image,the proposed method first segments the input image into superpixels and,then,several different types of features are calculated according to these superpixels.To increase classification accuracy,the dimensions of these features are reduced using the principal component analysis(PCA)algorithm followed by a weighted serial feature fusion strategy.After constructing a coding dictionary using the nonnegative matrix factorization(NMF)algorithm,the input image is recognized by a support vector machine(SVM)model.The effectiveness of the proposed method was tested on the public Scene-15,Caltech-101,and Caltech-256 datasets,and the experimental results demonstrate that the proposed method can effectively improve image classification accuracy.
出处 《Journal of Electronic Science and Technology》 CAS CSCD 2021年第1期70-78,共9页 电子科技学刊(英文版)
基金 the National Key Research and Development Program of China under Grant No.2018AAA0103203.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部