期刊文献+

凝聚中心犹豫度恒定的模糊层次聚类算法 被引量:8

Fuzzy Hierarchical Clustering Algorithm with Constant Hesitation of Agglomeration Center
下载PDF
导出
摘要 传统的模糊方法已无法解决数据本身不确定性的问题,犹豫模糊集方法却行之有效.原有的犹豫模糊层次聚类算法没有考虑犹豫模糊集对权值的影响,缺乏合理的权重计算方法,并且算法的时间复杂度和空间复杂度都为指数级.为了更有效地解决聚类分析问题,本文提出一种凝聚中心犹豫度恒定的模糊层次聚类算法(FHCA),首先设计了一种基于数据集本身信息的权重公式,可以得到更加合理的权重分配.此外还提出了新的簇中心的计算公式,不仅使聚类过程中,簇中心的犹豫度具有不变性,还将原有算法的时间复杂度以及空间复杂度从指数级降至线性级,并且聚类的质量不劣于原有的聚类算法. Traditional fuzzy methods are unable to solve the uncertainty of the data,but the hesitant fuzzy set methods can w ork efficiently.Existing hesitant fuzzy hierarchical clustering algorithms lack a reasonable weight calculation method,and the time complexity and space complexity of the algorithms are both exponential.In order to address these issues,this paper proposes a fuzzy hierarchical clustering algorithm with constant hesitation of agglomeration center(FHCA).Firstly,a weight formula based on the information of the data set is designed to obtain a more reasonable w eight distribution.In addition,a new formula for calculating the cluster center is proposed,which not only makes the cluster center’s hesitancy invariant during the clustering process,but also reduces the time complexity and space complexity of the original algorithm from exponential to linear,and the quality of clustering is not inferior to the original clustering algorithm.
作者 王志飞 陆亿红 WANG Zhi-fei;LU Yi-hong(College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2021年第1期20-26,共7页 Journal of Chinese Computer Systems
基金 浙江省基础公益研究计划项目(GG19E090005)资助。
关键词 犹豫模糊集合 聚类 数据挖掘 不确定数据 hesitant fuzzy set clustering data mining uncertain data
  • 相关文献

参考文献6

二级参考文献37

  • 1张洪美,徐泽水,陈琦.直觉模糊集的聚类方法研究[J].控制与决策,2007,22(8):882-888. 被引量:64
  • 2Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters [J]. J Cybernet,1974,3(2):32-57.
  • 3Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press,1981.
  • 4Pezdrey W. Condition fuzzy C-means[J]. Recognition Letters, 1996,17(4) :625-637.
  • 5Bellman R E, Zadeh L A. Decision-making in a fuzzy environment [J ]. Management Science, 1970, 17 (4):141-164.
  • 6Chiu Stephen L. A cluster estimation method to fuzzy model identication[A]. Proc of the IEEE Conf on Control Appilcations - Part2(of 3)[C]. 1994. 1240-1245.
  • 7Bezdek J C, Dunn J C. Optimal fuzzy partitions: A heuristic for extimating the parameters in a mixture of normal distributions [J]. IEEE Trans on Computer,1986,35 (8): 935-938.
  • 8Cheng T W, Goldgof Dmitry B, Hall Lawren E O.Fast fuzzy clustering [J]. Fuzzy Sets and Systems,1998, 93(1) :49-56.
  • 9Yang M S, Ko C H. On a class of fuzzy C-numbers clustering problems for fuzzy data[J]. Fuzzy Sets and Systems, 1996,84(1) :49-60.
  • 10Vania P, Ivan P. Comparison of clusters from fuzzy numbers [J]. Fuzzy Sets and Systems, 1998,97 (1):75-81.

共引文献62

同被引文献88

引证文献8

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部