期刊文献+

非线性KdV-mKdV方程的新的复合函数解 被引量:1

New Interaction Solutions of the Nonlinear KdV-mKdV Equation
原文传递
导出
摘要 利用孤立子方程KdV-mKdV的朗斯基解的形式和结构,我们提出了朗斯基形式展开法,运用这一方法获得了KdV-mKdV方程的丰富的新的复合函数解,并且朗斯基行列式中的元素不满足任何线性偏微分方程组.所得到的复合函数解是使用其它的方法得不到的. Abundant interaction solutions of the nonlinear Korteweg-de Vries and modified Korteweg-de Vries(KdV-mKdV) equation are obtained by means of a constructed Wronskian form expansion method.The method is based on the forms and structures of Wronskian solutions of the KdV-mKdV equation,and the functions used in the Wronskian determinants don’t satisfy linear partial differential equations.Such the interaction solutions is difficultly obtained via other methods.
作者 吕大昭 崔艳英 Lü Da-zhao;CUI Yan-ying(School of Science,Beijing University of Civil Engineering and Architecture,Beijing 100044,China;School of Engineering,Gengdan Institute of Beijing University of Technology,Beijing 101301,China)
出处 《数学的实践与认识》 2021年第3期223-229,共7页 Mathematics in Practice and Theory
基金 北京市教委科技计划项目(KM201410016013)。
关键词 KDV-MKDV方程 朗斯基行列式 复合函数解 雅各比椭圆函数 KdV-mKdV equation Wronskian determinants interaction solutions Jacobi elliptic function
  • 相关文献

参考文献1

二级参考文献8

  • 1Ma W X. Wronskian, generalized Wronskian and solutions to the Korteweg-de Vries equation. Chaos Solitons Fractals, 19:163-170 (2004)
  • 2Ma W X. Complexiton solution to the KdV equation. Phys Lett A, 301:35-44 (2002)
  • 3Freeman N C, Nimmo J J. Soliton solutions of the KdV and KP equations: The Wronskian technique. Phys Left A, 95:1-3 (1983)
  • 4Sirianunpiboon S, Howard S D, Roy S K. A note on the Wronskian form of solutions of the KdV equation. Phys Lett A, 134:31-33 (1988)
  • 5Matveev V B. Generalized Wronskian formula for solutions of the KdV equation: first applications. Phys Lett A, 166:205-208 (1992)
  • 6Ma W X, You Y C. Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans Amer Math Soc, 357:1753-1778 (2005)
  • 7Ablowitz M J, Kaup D J, Newell A C, et al. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud Appl Math, 53:249-315 (1974)
  • 8Zhang D J, Hietarinta J. Generalized double-Wronskian solutions to the NLSE. preprint, 2005

共引文献10

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部