摘要
利用孤立子方程KdV-mKdV的朗斯基解的形式和结构,我们提出了朗斯基形式展开法,运用这一方法获得了KdV-mKdV方程的丰富的新的复合函数解,并且朗斯基行列式中的元素不满足任何线性偏微分方程组.所得到的复合函数解是使用其它的方法得不到的.
Abundant interaction solutions of the nonlinear Korteweg-de Vries and modified Korteweg-de Vries(KdV-mKdV) equation are obtained by means of a constructed Wronskian form expansion method.The method is based on the forms and structures of Wronskian solutions of the KdV-mKdV equation,and the functions used in the Wronskian determinants don’t satisfy linear partial differential equations.Such the interaction solutions is difficultly obtained via other methods.
作者
吕大昭
崔艳英
Lü Da-zhao;CUI Yan-ying(School of Science,Beijing University of Civil Engineering and Architecture,Beijing 100044,China;School of Engineering,Gengdan Institute of Beijing University of Technology,Beijing 101301,China)
出处
《数学的实践与认识》
2021年第3期223-229,共7页
Mathematics in Practice and Theory
基金
北京市教委科技计划项目(KM201410016013)。