期刊文献+

焦炭光学组织图像的特征提取及分类识别

Characteristics extraction and classification recognition of coke optical texture images
下载PDF
导出
摘要 焦炭光学组织结构直接决定焦炭的质量。目前,焦炭光学组织含量测定主要是利用光学显微镜进行采集,操作过程较复杂,人工识别可能带来误差。基于图像分析方法,对焦炭光学组织图像中的各个显微组织结构进行特征截取。利用RGB像素值、颜色矩、LBP算法进行图像特征提取,并分别采用K-近邻、支持向量机和随机森林3种数学模型进行分类识别。精确度对比结果表明,在颜色矩提取的图像下,利用支持向量机模型计算方法识别焦炭光学组织的精度可达90%。 The optical texture of coke directly determines the quality of coke.At present,the determination of optical texture content of coke is mainly collected by optical microscope,the operation process is complicated,and the manual identification may bring errors.Based on the image analysis,each microstructure in the optical image of the coke is subjected to characteristics interception.RGB pixel value,Color Moments and Local Binary Pattern(LBP algorithm)are used for extracting their images characteristics.K-Nearest Neighbor,Support Vector Machine and Random Forest are used for classification and identification respectively.The accuracy results show that the image characteristics extraction method based on Color Moment,using the Support Vector Machine model calculation method to identify the coke optical texture can reach 90%.
作者 李文超 闫立强 王保荣 王杰平 李光跃 Li Wenchao;Yan Liqiang;Wang Baorong;Wang Jieping;Li Guangyue(College of Chemical Engineering,North China University of Science&Technology,Tangshan 063210,China;Tangshan Shougang Jingtang Xishan Coking Co.,Ltd.,Tangshan 063200,China)
出处 《燃料与化工》 2021年第2期17-21,共5页 Fuel & Chemical Processes
关键词 焦炭光学组织 特征提取 支持向量机 Coke optical texture Characteristics interception Support Vector Machine
  • 相关文献

参考文献4

二级参考文献57

  • 1杨永珍.煤岩配煤技术的发展与现状[J].煤化工,2004,32(3):6-9. 被引量:10
  • 2王海燕.煤岩学与炼焦配煤技术的发展[J].煤质技术,2004,19(6):39-41. 被引量:11
  • 3郭治,杜铭华,曲思建.焦炭反应性及反应后强度预测模型研究与分析[J].煤炭学报,2005,30(1):113-117. 被引量:13
  • 4刘运良,崔之栋,王慧英,李桂芝.论煤岩配煤中煤岩参数的选择[J].燃料与化工,1994,25(2):63-67. 被引量:6
  • 5Lin Qilang, Tang Haiyan, Li Chuanhui, et al. Carbonization behavior of coal-tar pitch modified with lignin/silica hybrid and optical texture of resultant semi-cokes [ J ]. Journal of Analytical and Applied Pyrolysis,2011,90 ( 1 ) : 1-6.
  • 6Wang Peizhen, Wang Qinfang. Fractal-based image analysis of coke optical texture[ A]. Proceeding on 2007 IEEE International Conference on Control and Automation[ C ]. 2007:3223-3225.
  • 7Vapnik V N. The nature of statistical learning theory[ C ]. 2nd Statistics for Engineering and Information Science[ A ]. New York:Springer,2000:314.
  • 8Jung C, Liu Q, Kim J. Accurate text localization in images based on SVM output scores [ J ]. Image and Vision Computing,2009,27 (9) : 1295-1301.
  • 9Xian G. An identification method of malignant and benign liver tumors from ultrasonography based on GLCM texture features and fuzzy SVM [ J ]. Expert Systems with Applications, 2010,37 ( 10 ) : 6737-6741.
  • 10Wang P, Zhou K, Zhou F, et al. Optical textures classification of coke microscopic image based on SVM [ A ]. 2010 International Conference on Computer Application and System Modeling [ C ]. 2010:596-600.

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部