期刊文献+

基于深度特征选择的多示例算法及在图像分类中的应用 被引量:3

Multi-instance learning based on deep feature selection and its application to image classification
下载PDF
导出
摘要 信息技术高速发展为人们生活带来便利的同时,海量的信息也给人们带来许多困扰,如图像检索变得越来越困难。因此智能化地进行图像分类识别具有重要的研究意义。基于多示例学习的图像分类方法得到了越来越多学者关注,。也提出了一些算法,但仍存在特征表达有限,模型受无关示例影响较大的问题。文章提出一种基于深度特征选择的多示例算法,并验证了此算法的有效性。该方法首先利用深度预训练模型提取示例高层语义特征,再将包投影到示例获取图像的深度特征,然后通过特征选择剔除干扰示例的影响,最后利用训练好的SVM分类器对图片类别进行预测。不同数据集上的实验结果表明,该方法有效地实现了图像分类。 The rapid development of information technology brings convenience to people’s lives.At the same time,massive information also brings many troubles to people,such as inefficient image retrieval.Therefore,intelligent image recognition and retrieval becomes important.Image classification methods based on multi-instance learning(MIL)have drawn increasing attention from scholars.Some effective algorithms based on MIL have been put forward,but the image representation is weak and the model cannot well deal with the disturbance of the useless instance.Therefore,this paper proposes a multi-instance algorithm based on deep bag feature selection and verifies the effectiveness of the algorithm.In this method,the pre-training deep network is firstly used to extract the instance high-level features and then the deep bag representations are computed by mapping to all instances.To elimination the influence of the noisy instances,an efficient feature selection method based on l2,1 is introduce to get the more discriminative bag mapping features.Finally,a learned SVM is used to predict the image label.Experimental results on different data sets show the effective of the proposed method.
作者 吕文恬 杨涵文 李星烨 高玉发 丁昕苗 LYU Wentian;YANG Hanwen;LI Xingye;GAO Yufa;DING Xinmiao(School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264000, China;Yantai No.1 Middle School of Shandong, Yantai 264000, China)
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2021年第3期350-356,共7页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(61876100,61572296) 山东工商学院研究生科技创新基金资助项目(3110340)。
关键词 图像分类 深度学习 特征表示 多示例学习 image classification deep learning feature representation multi-instance learning(MIL)
  • 相关文献

参考文献5

二级参考文献41

  • 1戴宏斌,张敏灵,周志华.一种基于多示例学习的图像检索方法[J].模式识别与人工智能,2006,19(2):179-185. 被引量:9
  • 2于林森,张田文.用于图像分割的滤波EM算法[J].计算机学报,2006,29(6):928-935. 被引量:7
  • 3Yu Jun, Tao Da-cheng, and Wang Meng. Adaptive hypergraph learning and its application in image classification[J]. IEEE Transactions on Image Processing, 2012, 21(7): 3262-3272.
  • 4Boutell M R, Luo Jie-bo, Shen Xi-peng, et al.. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37(9): 1757-1771.
  • 5Song Xiang-fa, Jiao Li-cheng, Yang Shu-yuan, et al.. Sparse coding and classifier ensemble based multi-instance learning for image categorization[J]. Signal Processing, 2013, 93(1): 1-11.
  • 6Zhou Zhi-hua and Zhang Min-ling. Multi-instance multi-label learning with application to scene classification[C]. Proceedings of Neural Information Processing Systems, Vancouver, 2006: 1609-1616.
  • 7Zhou Zhi-hua, Zhang Min-ling, Huang Sheng-jun, et al.. Multi-instance multi-label learning[J]. Artificial Intelligence, 2011, 176(1): 2291-2320.
  • 8Zhang Min-ling and Wang Zhi-jian. MIMLRBF: RBF neural networks for multi-instance multi-label learning[J]. Neurocomputing, 2009, 72(16-18): 3951-3956.
  • 9Zhang Min-ling. A k-nearest neighbor based multi-instance multi-label learning algorithm[C]. Proceedings of International Conference on Tools with Artificial Intelligence Arras, 2010: 207-212.
  • 10Li Ying-Xin, Ji Shui-wang, Kumar S, ct al.. Drosophila gene expression pattern annotation through multi-instance multi-label learning[J]. A CM/ IEEE Transactions on Computational Biology and Bioinformatics, 2012, 9(1): 98-112.

共引文献41

同被引文献47

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部